

高木 亮治 宇宙航空研究開発機構 宇宙科学研究所

内容

- JSS2の紹介
 - SORA-MA(富士通FX100)
- SORA-MAの性能評価
 - STREAM(TRIAD)
 - ステンシル系プログラム(UPACS-Lite)
- 高速化チューニング
 - ステンシル系プログラム(UPACS-Lite)
- ・まとめ

JSS2 (JAXA Supercomputer System Generation 2)

新スパコン 宙(SORA: Supercomputer for earth Observation, Rockets, and Aeronautics)システム概要図

JSS2システム概要

- SORA : Supercomputer for earth Observation, Rockets and Aeronautics
- J-SPACE : <u>J</u>AXA's <u>S</u>torage <u>P</u>latform for <u>A</u>rchiving,
 <u>C</u>omputing and <u>E</u>xploring (HPSS)

呼称 SORA-XX	主な用途	特徴
MA (MAin)	計算サーバ	1.31PFLOPS, 40TB (→ 3+PFLOPS, 90TB)
PP (PrePost)	前後処理	53.7TFLOPS, 10TB, 160ノード
LM (LargeMemory)	大メモリ	1TBノード, 512GBノード
LI (LogIn)	ログイン	4台の冗長構成
FS (FileSystem)	ファイルシステム	5PBのRAID6ディスク
TPP (TsukubaPP)	筑波計算サーバ	SORA-PPと同一構成が25ノード
TFS, KFS, SFS Tsubuka, Kakuda, SagamiharaFS)	筑波、角田、相模 原のファイルシス テム	データー時保管、高速データ転送

fppt.com

SORA-MA(富士通FX100)

SORA-MA, PP

- SORA-MA (FX100)
 - Fujitsu SPARC64 Xifx 1.975GHz
 - 1ノード: 1CPU、32コア
 - 16コア/CMG × 2CMG/CPU × 1 = 32コア
 - -1.011TFLOPS, $431GB/s \rightarrow B/F=0.43$
- SORA-PP (PRIMERGY RX350 S8)
 - Intel Xeon E5-2643V2 3.50GHz
 - 1ノード: 2CPU、12コア
 - -6コア/CPU×2CPU
 - -336GFLOPS、119.4GB/s \rightarrow B/F=0.36

SORA-MAの性能評価

STREAM(TRIAD) ステンシル系プログラム(UPACS-Lite)

STREAM(TRIAD)

do i=1,n a(i) = b(i) + S * c(i)enddo

8.

TRIAD@FX100

- 配列の種類によって性能が変化
 - 静的(302GB/s)~動的(278GB/s) > ポインタ(206GB/s)
 - 実行時オプション(Ipgparm -I demand)の指定が必要

TRIAD@FX100

- CMG×2による複雑な挙動
- numactl –interleave=allでほぼ線形な挙動
 - 1スレッド: 25.28GB/s (default) 、13.66GB/s (interleave)

ステンシル系プログラム

- UPACS-Lite: 圧縮性流体解析プログラム UPACSのサブセット
 - ステンシル系プログラム
- マルチブロック構造格子
- 陰解法(Block Red-Black、2nd Euler、内

部反復は2回)

- MUSCL+SHUS
- 乱流モデルはなし
- MPI + OpenMP

- 離散方程式:[時間積分]△Q = [RHS]
 - ΔQ: 更新 (未知) ベクトル
 - [時間積分]:
 - 疎行列 (陰解法)
 - 単位行列 (陽解法)
 - -[RHS]:対流項+粘性項

fppt.com

粘性項

- マルチブロック構造格子
 - ブロックの大きさ、アスペクト比はまちまち ⇒ループ長がまちまち
 - 階層構造をそのまま データ構造に反映

Thread Scalability

- 8スレッドまでは良い性能 (>80%)
- Interleaveを使うことでスケーラビリティは若干UP
 - 1スレッドの性能が低下するため

Hybrid vs Flat-MPI@1ノード

- 同一規模@ノード
 - $-40^3,80^3,160^3$
- Hybridが高速の場合 もある
 - ブロックが小(403)
 - 160³では16P2T, 8P4T
- ・803はFlat-MPIが高速

Hybrid vs Flat-MPI@多ノード

64ノード(weak scaling)までは傾向は大きく変わらず。

17

FX1, FX10, FX100 and Intel

- FX100(Gt, 2P16T)はFX1(O, 1P4T)の約32倍(S/Wチューニングを含む)
 - 最速(16P2T)は約37倍
- 同一S/W(A)では約11倍(2P16T)、約16倍(32P1T)

Intel:Xeon E5-2643V2,3.5GHz

高速化チューニング

UPACS-Lite

高速化チューニングの概要

Version	Tuning
0	オリジナル
Α	flux配列の構造体の変更+SIMD化促進@FX10
В	j,kループの手動融合(スレッド並列数の確保)
С	MFGSの書き下し+OCL(依存関係無視)
D	<u>flux配列</u> のインデックス変更:(i,j,k,:) → (:,i,j,k)
E	<u>flux配列</u> のインデックスの変更(CとDの比較で高速版を選択) 対流項:(i,j,k,:)、粘性項:(:,i,j,k)
F	手動アンローリング 初期化のベクトル記述:dq=0 → OpenMPで並列化 保存量ループの展開(do n=1,nPhysを削除)
G	諸々(後で紹介)
?t	?のcell配列インデックスの変更:(i,j,k,:) → (:,i,j,k)

主な配列: cell配列、flux配列

A(flux配列の構造体)

O	A
type cellFaceType real(8):: area,nt real(8), dimension(3):: nv real(8), dimension(5):: q_l,q_r real(8), dimension(5):: flux end type type visCellFaceType real(8):: area, mu real(8), dimension(3):: nv, dTdx, u real(8), dimension(5):: flux real(8), dimension(5):: dudx end type	type cellFaceType real(8), pointer, dimension(:,:,:) :: area,nt real(8),pointer, dimension(:,:,:) :: nv real(8), pointer, dimension(:,:,:) :: q_l,q_r real(8), pointer, dimension(:,:,:) :: flux end type type visCellFaceType real(8), pointer, dimension(:,:,:) :: area, mu real(8), pointer, dimension(:,:,:) :: nv, dTdx, u real(8), pointer, dimension(:,:,:) :: flux real(8), pointer, dimension(:,:,:) :: dudx end type
type(*), pointer, dimension(:,:,:) :: cface	type(*) :: cface
do n; do k; do j; do i cface(i,j,k)%flux(n) enddo	do n; do k; do j; do i cface%flux(i,j,k,n) enddo

A(SIMD化@FX10)

SIMD化を促進するための修正(粘性項)

- FX10向けチューニングで実施
- 一時配列のスカラー化: a(3,3)→a_11,a_12,...
 - viscous_cfacev:0%→99%@FX10
- ・組み込み関数の手動展開
 - matmul, dot_productなど
 - viscous flux:10.64%→99.11%@FX10

A(SIMD化@FX10)

- SIMD化は最内ループに適用される。
 - ループボディに配列のベクトル記述があると、そこが SIMD化され、残りはSIMD化されない。

SIMD ×	SIMD o
allocate(a(imax,5),b(imax,5),c(imax,5))	allocate(a(imax,5),b(imax,5),c(imax,5))
do i=1,imax u = a(i,2)/a(i,1) v = a(i,3)/a(i,1) w = a(i,4)/a(i,1) $a(i,:) = b(i,:) + c(i,:) \leftarrow$ ここだけSIMD化 Enddo	do i=1,imax u = a(i,2)/a(i,1) v = a(i,3)/a(i,1) w = a(i,4)/a(i,1) a(i,1) = b(i,1) + c(i,1) a(i,2) = b(i,2) + c(i,2) a(i,3) = b(i,3) + c(i,3) a(i,4) = b(i,4) + c(i,4) a(i,5) = b(i,5) + c(i,5) enddo

fppt.com(

B(OpenMPループの一重化)

Α	В	G
do n=1,nPhys !\$omp parallel do private(i,j,k) do k=1,kmax do j=1,jmax do i=1,imax enddo enddo enddo enddo !\$omp end parallel do enddo	jkmax = jmax*kmax do n=1,nPhys !\$omp parallel do private(jk,i,j,k) do jk=1,jkmax k = (jk-1)/jmax+1 j = jk-jmax*(k-1) do i=1,imax enddo enddo !\$omp end parallel do enddo	do n=1,nPhys !\$omp parallel do private(i,j,k) & !\$omp collapse(2) do k=1,kmax do j=1,jmax do i=1,imax enddo; enddo !\$omp end parallel do enddo

- 外側ループの一重化でスレッド並列の粒度を確保
- B(手動一重化)とG(collapseで指定)でほぼ性能差はなし
- ほとんど効果はなかった
 - スレッド数 > ループ長の場合は効果があったが

24

高速化チューニングの概要

Version	Tuning
0	オリジナル
Α	flux配列の構造体の変更+SIMD化促進@FX10
В	j,kループの手動融合(スレッド並列数の確保)
С	MFGSの書き下し+OCL(依存関係無視)
D	<u>flux配列</u> のインデックス変更:(i,j,k,:) → (:,i,j,k)
E	<u>flux配列</u> のインデックスの変更(CとDの比較で高速版を選択) 対流項:(i,j,k,:)、粘性項:(:,i,j,k)
F	手動アンローリング 初期化のベクトル記述:dq=0 → OpenMPで並列化 保存量ループの展開(do n=1,nPhysを削除)
G	諸々(後で紹介)
?t	?のcell配列インデックスの変更:(i,j,k,:) → (:,i,j,k)

主な配列: cell配列、flux配列

F(保存量ループの展開)

E	F
jkmax = jmax*kmax	jkmax = jmax*kmax
do n=1,nPhys	
!\$omp parallel do private(jk,i,j,k)	!\$omp parallel do private(jk,i,j,k)
do jk=1,jkmax	do jk=1,jkmax
k = (jk-1)/jmax+1	k = (jk-1)/jmax+1
j = jk-jmax*(k-1)	j = jk-jmax*(k-1)
do i=1,imax	do i=1,imax
q(i,j,k,n) =	$q(i,j,k,1) = \dots$
	q(i,j,k,2) =
enddo	
enddo	enddo
!\$omp end parallel do	enddo
enddo	!\$omp end parallel do

26

G

• MFGS(時間積分)で使われているBlock Red-Blackのブロック分割の最適化

G

- 2重ループの一重化をやめてOpenMPの collapse(2)を利用
- データ通信の前後処理部のOpenMP化
- nPhysループの位置の変更

F	G
!\$omp parallel do	!\$omp parallel do collapse(2)
do k=1,kmax	do k=1,kmax
do j=1,jmax	do j=1,jmax
do i=1,imax	do n=1,nPhys
dq(1,i,j,k) =	do i=1,imax
dq(2 ,i,j,k) =	$dq(\mathbf{n},i,j,k) =$
•••	enddo; enddo; enddo
enddo; enddo; edndo	!\$omp end parallel do
!\$end parallel do	

28

G(nPhyループの位置)

cell配列	Elaps
dQ(i,j,k, n)	0.320 (E)
dQ(<mark>n</mark> ,i,j,k)	0.703 (Et)
dQ(i,j,k,1)	0.247 (F)
dQ(1,i,j,k)	0.246 (Ft)
dQ(i,j,k, n)	0.250 (G)
dQ(<mark>n</mark> ,i,j,k)	0.268 (Gt)
	$dQ(i,j,k,\mathbf{n})$ $dQ(\mathbf{n},i,j,k)$ $dQ(i,j,k,1)$ $dQ(1,i,j,k)$ $dQ(i,j,k,\mathbf{n})$

$ALL (160^3)$

- FX100とIntelでO→A(flux配列の構造体変更)の傾向が逆
- A以後のチューニング傾向は同じ

対流項と粘性項(1603)

- E:対流項←C(i,j,k,:)、粘性項←D(:,i,j,k)
 - 粘性項は対流項よりもflux配列の使いまわしが多いから?

まとめ

- JAXAに新しく導入されたJSS2のシステム概要を紹介すると同時に、中核システムであるSORA-MA(富士通FX100)の性能評価結果を紹介した。
- ステンシル系プログラムを対象とした高速化 チューニングを通じて、利用のための知見が得ら れた。
 - 配列インデックスによる影響
 - SIMD化を促進するために必要な事
 - SPARC系とIntel系の違い
 - **—** ...
- 更なる高速化、利用ノウハウの蓄積を目指す。

実行効率(Gt, 160³, 2P16T)

項目		実行効 率[%]
ALL		6.93
convect (対流項)	muscl	10.2
	flux	11.1
	post	2.75
viscous (粘性項)	cfacev	8.33
	flux	4.72
	post	2.78
MFGS(時間積分)		6.66