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HPF: High Performance Fortran

Data Mapping: 1—H¥ N8 E TR
stE (. owner-compute rule

T AL O B ETHIE IO S LS HER

DIMENSION A(1000,1000)
'HPF$S DISTRIBUTE A(* ,ELGE}Iﬁ:

| HPF S EPENDENT

0 J =1, 1000

DO I =1, 1000
A(I,J) = 0.0

v

=70t v AR
Bl &EDEIT D%
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END DO Fal
qD DO L
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HPF/JA. HPF/ES

= HPF/JA
s T —ARE5EF | Edirective D ¥i5E

= Asynchronous Communication, Shift optimization, Communication schedule reuse

« A6 511E Z$E D& 1L (reduction®)
s HPF/ES

= HALO, Vectorization/Parallelization handling, Parallel 1/0

= B | A5 N
= HPFIE, I?IZIK(zHPFPC _ Eééfﬁﬁgéféiﬁ HPF/ES
(HPFHEEREER)) T p =
YR—kEN TS : ﬁfjuﬁr-_{ émmd
= SC2002 Gordon Bell Award * INDIRECT : gz%;ritvf 7054
= 14.9 Tflops Three-dimens - BRETHE -MPILF
Fluid Simulation for Fusion i N ™
Science with HPF on HPF20 |- gl;jN_BLOCH lEICFE;L & EEFI_IEET
the Earth Simulator lcorel | * SHADOW . EER;;iﬁfL{mHJ$Hﬁ
- HPFZOFFETREAL (F Sl
s BRI A —(EHHR—FLTL gﬁﬂg?“ . JEELE I
n *EdHPF at Rice U. \ ' oale - - etc.

i HPF /JA




Global Address Space Model Programming

a—4 hilocal/globalz EE 9 4 (BT 5)

Partitioned Global Address Space (PGAS) @ @ @

model

> —_— - 0O Shared Variable x
Zl/“JF &%\%Ijémf:}%ugb:laﬁﬁ ‘i~ ﬁm—d—(f SSllﬂl'::'d address
LTS (afflnlty) space

s DEAEYETILIZHIS

T
[shared/global JOFAE (L, LNALAL

ECHMLRERIFFICHTE =,

-
- Split-C @ @ @
. PCH++

= UPC b :
] artitionec
= CAF: Co-Array Fortran Clobal
= (EM-C for EM-4/EM-X) Address My ¢ My «wai My

(Global Array) Space




UPC: Unified Parallel C

Unified Parallel C
= Lawrence Berkeley
National Lab.Z M ZE% 5B

Private/Shared 2B 5§

SPMD
= MYTHREADMEBEZ DAL YFES
« [FEIHAHE

« Barriers

= Locks

= Memory consistency control

User’s view
« HE|EShi=shared space
[CDWT. BHDRALYRAENMET S,
» TzFZL. B &S f=shared space
(XX L yRIZx L TaffinityZz 2,

1T51IR DA

#include <upc_relaxed.h>
shared int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void) {
int 1, j;
upc_Torall (1=0; 1<THREADS; i++;1){
c[i1] = O;
for (J=0; J<THREADS; j++)
cli] += a[il0i1*b1;




Shared B &

= Shared&lLySqualifierd B A3 %

-gﬁr%e)d array DEXRET OV IthreadD AEYEHEIZHERECE

shared int X[THREADS] /*One element per thread */
shared int y[10][THREADS] /7*10 elements per thread */

= shared'T A HS—E
shared Int a; /*One i1tem on system (affinity to thread 0) */
int b; /7* one private b at each thread */

= Shared Pointer THREADS = 30154
shared Int X;
shared Int *p; /*x will have affinity to thread 0*/
shared int y[THREADS];
int z;
Thread 0 Thread 1 Thread 2
X
y[0] y[1] y[2]

Z Z Z




CAF: Co-Array Fortran

= Global address space programming model integer a(10,20)[*]

= one-sided communication (GET/PUT) - - -
= SPMD E1TZHIIZ

= Co-array extension image 1 image 2 image N
« HETOvYYTEKTOY I L., BES"image %D,
real, dimension(n)[*] :: X,y

x(2) = y()[dl
q® image TEIKyDT—4%A—HILEXIZTaET % (get)

2 TOTSRE NTH—TUREE TS ZLERITHLTHIET 5,
« STED S E

u 7'-—90)%':;2&@?)10) image 1 image 2 image N
ERBIIVET47%E-oTV\%,
= amenable to compiler-based

iIT (this_image() > 1)
a(1:10,1:2) =

communication optimization a(1:10,19:20)[this_image()-1] .



CAF Programming Model

= SPMD process images
= fixed number of images during execution
= images operate asynchronously

= Both private and shared data
= real x(20, 20) a private 20x20 array in each image
= real y(20, 20)[*] a shared 20x20 array in each image

= Simple one-sided shared-memory communication
s X(,J+2) = y(,p:p+2)[r] copy columns from image r into local columns

= Synchronization intrinsic functions

sync all — a barrier and a memory fence _ . .
= Sync_ y 2R FTDco-Array notationd rJ &E
= Sync_mem - a memory fence 2 5t D Co-dimension

= sync_team([team members to notify],

[team members to wait for]) ;gaII(;iI::enS|on(n,n)[p,*] -2 ab.e
do g=1,p
Pointers and (perhaps asymmetric c(i,j)[myP,myQ] = c(i,j)[myP,myQ]
- : (p : P y ) + a1,k [myP, ql*b(k,3)[q.myQ]
= dynamic allocation enddo
enddo

1THIFE DI 20



XPFortran (VPP Fortran)

= NWT (Numerical Wind Tunnel)[|] (TSN -EE. EEHY

= local&global DX BIET 5,

s AT ADpartitionEETE . TNEZHAVWTT 2. GEIL—T DR EIFIER
 BREDBEREHIEERDIENTES, SEBILEITELY,

1XOCL PROCESSOR P(4)

dimension a(400),b(400) Global Array (Mapped)

IXOCL INDEX PARTITION D=
(P,INDEX=1:1000)

IXOCL GLOBAL a(/D(overlap=(1,1))), b(/D)

IXOCL PARALLEL REGION / EQ'/IVALEN({E \
IXOCL SPREAD DO REGIDENT (a,b) /D
doi= 2, 399
dif (i) = u(i+1) - 2*u(i) + u(i-1)
end do Local Local Local Local

IXOCL END SPREAD Array Array Array Array

IXOCL END PARALLEL
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Global Address SpaceE:ED Fll - R

= MPIEHPFOHREIZHRIET S
= HDOMYZWLETIL
« BB, TRY ISV HAEE, MPIHZEEEITIEAELY,
« A—YMNSRZBTOTSZIVTETIL BIE. T—FDERE. STEDE
U TZHIETES
= MPIZ&Dtuningt TES,
« J0O%5 5 LELTpack/unpackZzE M ULATHLILY,

= RR

» MHDF-HIZTEFBZILERLTEY . BRIZIEENGELY, (OpenMPD &5
[Zincremental TIE7ELY)

= (XY, FIEILELTIE DGO DY,
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V- g

IHIKDFEED
MPI
= DR EENS, F]IK!
s CHATLLDH...1?
OpenMP:
« fHHE  incrementallZii3{t T= 5,
« XEHEAEYM@EIMEF,. 10078y HET
= incremental CL\WND M, FEZFE AT IZIEF L TULVELY,
= MPIO—KFMNF TIZHBEE L. Mixed OpenMP-MPI [EHFEYBLELZNIEMNSZLY

HPF -
X BKS127>TET= (HPF for PC cluster)

M. ERAMNETOTSLIZELLOL, MERLHD
AVINASIZEYTE RITDAA—UHRRZEL
t%h. ..

Global Address Space &

KETIE., FALZALEYDD2H S,
MPI&YITFEL, ZSZZDHEELTS...
BEAXRMIC. TAJSLEESMZLDLENH D,
ZTH3TH. COKBNWTFESoTHLLD ...

SEI R A= DYAE &

s T, EBFAERVIZIEZFZEZFEASREIIELOTETLNS, B DEAEYIX. T HLLY,
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Think about MPI, ...

= Why was MPI accepted and so successful?

= Portability: Most parallel computing platforms can run MPI programs
(even in SMP).

= Many free and portable software such as MPICH.

= Education: MPI Standard allows many programmers to learn MPI
parallel programming.

= In university
= By book

= The cost of parallelization is also important for acceptance
by application programmers.
= Easy to transfer from an original sequential program.
= What application programmers need to learn must be small.

24



Many Parallel programming languages ...

So far, many parallel programming languages
were proposed In computer science community.

Are they actually used by application users?
Where were they gone?

What is missing in them?

Why?

25



“Petascale” Parallel language design working group
= Objectives

= Making a draft on “petascale” parallel language for “standard” parallel
programming

= To propose the draft to “world-wide” community as “standard”

= Members

= Academia: M. Sato, T. Boku (compiler and system, U. Tsukuba), K. Nakajima (app. and
programming, U. Tokyo), Nanri (system, Kyusyu U.), Okabe (HPF, Kyoto U.)

= Research Lab.: Watanabe and Yokokawa (RIKEN), Sakagami (app. and HPF, NIFS), Matsuo
(app., JAXA), Uehara (app., JAMSTEC/ES)

= Industries: Iwashita and Hotta (HPF and XPFortran, Fujitsu), Murai and Seo (HPF, NEC),
Anzaki and Negishi (Hitachi)
= 4 WG meetings were held (Dec. 13/2007 for kick-off, Feb. 1, March 18, May 12)
= Requests from Industry (at the moment before starting activities)

= Not only for scientific applications, also for embedded multicore systems

= Not only for Japanese standard, and should have a strategy for world-wide
“standard”

= Consider a transition path from existing languages such as HPF and XPFortran.

26



The rise and fall of High Performance Fortran

-- Lessons learned from HPF --

“with love” © by Sakagami@NIFS and Murai@NEC

= Background

= MPI is (still now) an obstacle for programming a distributed memory

systems.

=« Debugging MPI code is not easy, and update/modification of MPI program forces a
tough work for application people.

= If MPI is only a solution to parallel machine, nobody wants to use parallel machines.
(EP is ok, but ...)

= There was a great demand for parallel programming languages!
= Why HPF?

Application people want just easy parallel programming environment
with reasonable (not necessarily perfect) performance.

OpenMP is just for shared memory systems.

Not practical alternative solutions. (New languages by US HPCS project

are research prototype, not yet available for practical use.)
27



HPF history in Japan

= Still survive in Japan, supported by HPF promotion consortium

= HPF Users Group Meeting (HUG from 1996-2000), HFP intl.
workshop (in Japan, 2002 and 2005)

= Compiler Availability

HPF/ES (HPF+HPF/JA+some extension for Earth Simulator)

HPF/SX, HPF/VPP, HPF/ES for PC clusters, fhpf (free software distributed
by HPF consortium)

ADAPTOR (GMD, Germany)
SHPF (U. Vienna, Austria)
PGHPF (PGI, US)

28



“Pitfall” in Design policy of HPF

= “ldeal” design policy of HPF

= A user gives a small information such as data distribution and parallelism.

= The compiler generates “good” communication and work-sharing
automatically.

= By Iignoring directives, parallelized code can be considered as the original
sequential code.

s “Don’t give too much expectation to users which the
technology could not meet.”

= This “ideal” design policy had generated a great “expectation” from
users!

= But, the reality was not ...

29



“Pitfall” in the base language

The base language of HPF was Fortran 90.

A bad thing was that at the moment of HPF announced (mid
90’s), F90 was still immature.

Many application people have to rewrite programs in F90 in
order to use HPF

= Their code was often written in F77.

= Re-write from F77 to F90 was not easy work.

“Application people domr’t want to rewrite their
programs. They are very conservative’

Sometimes, they complained that “l re-wrote my program by

spending a lot time, but the performance was not good!”

= The reason why the performance of HPF was not so good was
sometimes due to the immaturity of FO0 implementation.

30



“Pitfall” in compliler optimization and quality

No explicit mean for performance tuning .
= Everything depends on compiler optimization.

Users can specify more detail directives, but no information how
much performance improvement will be obtained by additional

Information

= INDEPENDENT for parallel loop
= PROCESSOR + DISTRIBUTE
= ON HOME

The performance is too much dependent on the compiler quality,
resulting in “incompatibility” due to compilers.

= “By using compiler A, I got very good performance. But It is not by
compiler B.”

“Specification must be clear. Programmers want to
know what happens by giving directives”
= “Small kindness” causes just a “Big trouble” (in Japanese maxim)
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Other Lessons ...

Large specifications were included to satisfy “theoretical”
completeness of the language model.

= Useless complex combination of data distributions

s ““Specification must be clear and simple”

Immaturity of early compilers disappointed users.
s ‘Dot release a bad immature compiler in early stage”’

No reference implementation of HPF like MPICH in MPI
standard.

= Many different interpretations in early stage

= Free and Open-source implementation is desirable

What was
a technical
Problem?

“Education” should be considere
= How will a new language should be acc
= No text book, no tutorial materials
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Status of Parallel Language WG

= What we agreed in the last meeting:

Basic execution model (SPMD)

Directive extension

Explicit communication for user’s performance tuning
Support for common communication pattern

Need of the interface to MPI at low level to allow wider
range of distributed parallel programming

= What we don’t agree yet:

Global view vs. Local view
One-sided communication vs. Two-sided communication

33



Objectives and What we agreed (1)

= Easy to use for beginners. Easier than MPI.

= Use the existing languages (C/Fortran) as
the base language and extend them by the
directives (like OpenMP)

=  Minimum extension of the base language if core0 corel core2
required

= (Education cost is cheaper than a “new
language™)

Duplicated execution
= Communication must be explicit
= Communication happens when specification

v v v

specifies it. directives
= It is important for performance tuning by :
the expert users, Comm, sync and work-sharing

= SPMD model as a basic execution model

= Duplicated execution if no directive
specified.

= Work-sharing when directives are
encountered.
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Objectives and What we agreed (2)

Support common pattern (communication and work-sharing) for data
parallel programming

= Reduction and scatter/gather

= Communication of sleeve (shadow) area

= Like OpenMPD, HPF/JA, XFP

= Still we have a problem how to view & describe distributed data (See next ...)

Need to interface to MPI at low level
= Allows the programmer to use MPI
= Support for wider-range of distributed-memory parallel programming
= It can be useful to program for large-scale parallel machine.
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Under discussion (not agreed yet)

Global view vs. Local view

Global view D AG(30,1:10) D AG(30,11:20) D AG(30,21:30)

Local view AL(30,10) AL(30,10) AL(30,10)

P1 P2 P3

= Global View (HPF-like)
= Easy-to-use for global operations for Array
= Good for array-based computation (e.g. CFD)

= Local view (PGAS, CAF, UPC)
= SPMD, local and external memory operations are explicit
= Good for FEM-type applications.

One-sided communication vs. Two-sided communication

= One-side comm. is easy-use, but sometime requires HW for high
performance

= Semantics of One-sided communication is not clear.
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