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“High productivity” implies three properties:
1. human-centric: programming at a high level of abstraction
2. high-performance: providing “abstraction without guilt”
3. reliability 

Raising the level of abstraction is acceptable only if   
target code performance is not significantly reduced

This relates to a broad range of topics:
0 language design
0 architecture- and application-adaptive compiler technology
0 operating and runtime systems
0 library design and optimization
0 intelligent tool development
0 fault tolerance
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Raising the level of abstraction is acceptable only if   
target code performance is not significantly reduced

This relates to a broad range of topics:
0 language design
0 architecture- and application-adaptive compiler technology
0 operating and runtime systems
0 library design and optimization
0 intelligent tool development
0 fault tolerance

The Meaning of “High-Productivity”
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Multicore: An Emerging Technology

The era of faster sequential processors is over—exponential growth 
of frequency can no longer be maintained
0 CMOS manufacturing technology approaches physical limits 
0 power wall, memory wall, instruction-level parallelism (ILP) wall
0 Moore’s Law still in force: number of transistors on chip increasing

Multicore technology provides continued performance growth
0 a multicore chip is a single chip with two or more independent processing units
0 improvements by multiple cores on a chip rather than higher frequency
0 on-chip resource sharing for cost and performance benefits

Multicore systems have been produced since 2000
0 IBM Power 4; Sun Niagara; AMD Opteron; Intel Xeon;…
0 Quadcore systems by AMD, Intel 
0 IBM/Sony/Toshiba:  Cell Broadband Engine                        

Power Processor (PPE) and 8 Synergistic PEs (SPEs)
peak 100 GF double precision (IBM Power XCEll 8i)

1000 cores on a chip possible with 30nm technology

“Manycore” chips are already emerging …
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Future Multicore Architectures:
From 10s to 100s of Processors on a Chip

Tile64  (Tilera Corporation, 2007)
0 64 identical cores, arranged in an 8X8 grid
0 iMesh on-chip network, 27 Tb/sec bandwidth
0 170-300mW per core; 600 MHz – 1 GHz 
0 192 GOPS (32 bit)—about 10 GOPS/Watt

Kilocore 1025 (Rapport Inc. and IBM, 2008)
0 Power PC and 1024 8-bit processing elements
0 125 MHz per processing element
0 32X32 “stripes” dedicated to different tasks 

512-core SING chip (Alchip Technologies, 2008)
0 for GRAPE-DR, a Japanese supercomputer project

80-core 2 TF research chip from Intel (2011)
0 2D  on-chip mesh network for message passing
0 1.01 TF (3.16 GHz); 62W power—16 GOPS/Watt
0 Note: ASCI Red (1996): first machine to reach 1 TF

4,510 Intel Pentium Pro nodes (200 MHz)  
500 KW  for the machine + 500 KW for cooling of the room
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Intra-chip inter-core bandwidth is much larger than for a 
typical parallel machine (SMP or MPP)

Intra-chip inter-core latencies are much smaller

Multicore systems can offer lightweight synchronization

Lock-based synchronization is unacceptable: transactional 
memory and full/empty bits (Cray MTA) are alternatives

Processing-In-Memory (PIM) technology offers additional 
methods for exploitation of locality

IntraIntra--chip interchip inter--core core bandwidthbandwidth is much larger than for a is much larger than for a 
typical parallel machine (SMP or MPP)typical parallel machine (SMP or MPP)

IntraIntra--chip interchip inter--core core latencieslatencies are much smallerare much smaller

MulticoreMulticore systems can offer lightweight systems can offer lightweight synchronizationsynchronization

LockLock--based synchronization based synchronization is unacceptable: transactional is unacceptable: transactional 
memory and full/empty bits (Cray MTA) are alternativesmemory and full/empty bits (Cray MTA) are alternatives

ProcessingProcessing--InIn--Memory (PIM) Memory (PIM) technology offers additional technology offers additional 
methods for exploitation of localitymethods for exploitation of locality

Multicore Systems are Not Just Small   
SMPs or MPPs



Top 500 Performance Development
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From Eniac (1946) …

103 OPS



…to LANL Roadrunner: Top 500 #1 

Cell Blade

12,960 Cell chips (100 GF double precision)
Each Cell contains a PowerPC and 8 SPEs
6,948 dual-core Opterons

1,026 TF=1015 OPS
The first machine reaching

Peta-scale performance
17 clusters, each with 192 nodes
Each node contains Opteron and 4 Cells

Total: 122,400 cores  



HPC has become the third pillar of science and 
engineering, in addition to theory and 
experiment

Traditional application areas include:
0DNA Analysis
0Drug Design
0Medicine
0Aerospace
0Manufacturing
0Weather Forecasting and Climate Research

New architectures facilitate new applications:     
0Graph Traversals
0Dynamic Programming
0…
0Backtrack Branch & Bound
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Traditional application areas include:
0DNA Analysis
0Drug Design
0Medicine
0Aerospace
0Manufacturing
0Weather Forecasting and Climate Research

New architectures facilitate new applications:     
0Graph Traversals
0Dynamic Programming
0…
0Backtrack Branch & Bound

Applications

UC Berkeley’s
“Dwarfs”
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The designers of the very first high level programming language were 
aware that their success depended on the target code performance:

John Backus (1957): “… It was our belief that if FORTRAN … were to translate 
any reasonable scientific source program into an object program only half 
as fast as  its hand-coded counterpart, then acceptance of our system 
would be in serious danger …”

The designers of the very first high level programming language were 
aware that their success depended on the target code performance:

John Backus (1957): “… It was our belief that if FORTRAN … were to translate 
any reasonable scientific source program into an object program only half 
as fast as  its hand-coded counterpart, then acceptance of our system 
would be in serious danger …”

High-level algorithmic languages became generally 
accepted standards for sequential programming since 

their advantages outweighed any performance drawbacks

For programming of HPC systems 
no similar development took place

High-Level Sequential Languages



The MPI Message-Passing Model
widely adopted portable standard for full control of communication
relatively simple execution model 
can achieve good performance on commodity clusters

Drawbacks of the MPI Model
low-level paradigm: “the assembly language of parallel programming”
lack of separation between algorithm and communication management
complex, difficult-to-change communication structures
scalability to peta-scale questionable

Alternatives to MPI have been proposed
automatic vectorization and parallelization
libraries for one-sided communication (SHMEM, ARMCI, GASNet)
High Performance Fortran (HPF), PGAS languages, OpenMP, etc.

The MPI MessageThe MPI Message--Passing ModelPassing Model
widely adopted portable standard for full control of communicatiwidely adopted portable standard for full control of communicationon

relatively simple execution model relatively simple execution model 

can achieve good performance on commodity clusterscan achieve good performance on commodity clusters

Drawbacks of the MPI ModelDrawbacks of the MPI Model
lowlow--level paradigm: level paradigm: ““the assembly language of parallel programmingthe assembly language of parallel programming””

lack of separation between algorithm and communication managemenlack of separation between algorithm and communication managementt

complex, difficultcomplex, difficult--toto--change communication structureschange communication structures

scalability to scalability to petapeta--scale questionablescale questionable

Alternatives to MPI have been proposedAlternatives to MPI have been proposed
automatic automatic vectorizationvectorization and parallelizationand parallelization

libraries for onelibraries for one--sided communication (SHMEM, ARMCI, sided communication (SHMEM, ARMCI, GASNetGASNet))

High Performance Fortran (HPF), PGAS languages, High Performance Fortran (HPF), PGAS languages, OpenMPOpenMP, etc., etc.

Programming Paradigm for 
MPPs and Clusters: MPI is State-of-the-Art



real,  allocatable A(:, : ), B(:, : )  
…

do while ( .not. converged )   
do J=1,N

do I=1,N  
B(I,J)=0.25(A(I-1,J)+A(I+1,J)+A(I,J-1)+A(I,J+1))

enddo
enddo

A(1:N,1:N)=B
…
enddo

MPI vs HPF:
An Example for Locality Management (Jacobi Relaxation)

Sequential Code

Let A and B be partitioned into blocks of columns mapped to
different processors. All processors can work concurrently on 
their local data, but an exchange must take place at segment 
boundaries after each iteration…

…P1 P2 Ps

dependence pattern

Parallelization Based on Data Distribution



Pk do while ( .not. converged )   
do J=1,M   ! Number of local columns

do I=1,N  
B(I,J)=0.25(A(I-1,J)+A(I+1,J)+

A(I,J-1)+A(I,J+1))
enddo

enddo
…

Pk+1Pk-1

Processor Pk reads:
• rightmost column of Pk-1          
• leftmost column of  Pk+1.

Processor Pk copies:
• its leftmost column to Pk-1    
• its rightmost column to Pk+1.

Boundary Exchange in Overlap Regions

After iteration:
Data Exchange

! purely local operation in each iteration:

halo regions



do while (.not. converged)
do  J=1,M

do  I=1,N
B(I,J) = 0.25 * (A(I-1,J)+A(I+1,J)+

A(I,J-1)+A(I,J+1))
end do 

end do
A(1:N,1:N) = B(1:N,1:N) 

local computation
initialize MPI 

if (MOD(myrank,2) .eq. 1) then                                                            
call MPI_SEND(B(1,1),N,…,myrank-1,..)                                                           
call MPI_RCV(A(1,0),N,…,myrank-1,..)                                                           
if (myrank .lt. s-1) then                                                            

call MPI_SEND(B(1,M),N,…,myrank+1,..)                                                   
call MPI_RCV(A(1,M+1),N,…,myrank+1,..)                                                   

endif
else  …

…

The Key Idea of The Key Idea of 
High Performance Fortran (HPF)High Performance Fortran (HPF)

processors  P(NUMBER_OF_PROCESSORS)
distribute(*,BLOCK) onto P :: A, B

do while (.not. converged)
do  J=1,N

do  I=1,N
B(I,J) = 0.25 * (A(I-1,J)+A(I+1,J)+

A(I,J-1)+A(I,J+1))
end do 

end do
A(1:N,1:N) = B(1:N,1:N) 

global computation

data distribution

HPF ApproachMessage Passing Approach

communication 
compiler-generated

local view of data, local control, 
explicit two-sided communication

global view of data, global control, 
compiler-generated communication

… …

K. Kennedy, C. K. Kennedy, C. KoelbelKoelbel, and H. Zima: , and H. Zima: The Rise and Fall of  High Performance Fortran: An Historical ObThe Rise and Fall of  High Performance Fortran: An Historical Object Lessonject Lesson

Proc. History of Programming Languages III (HOPL III), San DiegoProc. History of Programming Languages III (HOPL III), San Diego, June 2007, June 2007

communication



Example: Sweep Over Unstructured Mesh in HPF

!HPF$ PROCESSORS P(NUMBER_OF_PROCESSORS())
TYPE NODE       ! type of a node in the unstructured grid
…
REAL::V1, V2    ! flow variables
END TYPE NODE

TYPE(NODE), ALLOCATABLE::GRID(:)
REAL, ALLOCATABLE::EDGE(:,2)    
INTEGER, ALLOCATABLE::MAP(:)     ! mapping array

!HPF$ DYNAMIC, DISTRIBUTE(BLOCK)::GRID
!HPF$ DYNAMIC, DISTRIBUTE(BLOCK,*)::EDGE
!HPF$ DISTRIBUTE(BLOCK)::MAP

…
! Read parameters; allocate GRID, MAP; initialize GRID, M

CALL GRID_PARTITIONER(GRID,MAP)
!HPF$ REDISTRIBUTE GRID(INDIRECT(MAP))

ALLOCATE(EDGE(M,2))
! Initialize and realign EDGE with GRID
! Sweep over edges of the grid:
!HPF$ INDEPENDENT,ON HOME(EDGE(J,1)),NEW(N1,N2,DELTAV),REDUCTION(V2)

DO J=1,M
N1=EDGE(J,1), N2=EDGE(J,2)
…
DELTAV=F(V1(N1),V1(N2))
V2(N1)=V2(N1)-DELTAV
V2(N2)=V2(N2)+DELTAV
ENDDO



Fortran+MPI Communication
for 3D 27-point Stencil (NAS MG rprj3)

subroutine comm3(u,n1,n2,n3,kk)

use caf_intrinsics

implicit none

include 'cafnpb.h'

include 'globals.h'

integer n1, n2, n3, kk

double precision u(n1,n2,n3)

integer axis

if( .not. dead(kk) )then

do  axis = 1, 3

if( nprocs .ne. 1) then

call sync_all()

call give3( axis, +1, u, n1, n2, n3, kk )

call give3( axis, -1, u, n1, n2, n3, kk )

call sync_all()

call take3( axis, -1, u, n1, n2, n3 )

call take3( axis, +1, u, n1, n2, n3 )

else

call comm1p( axis, u, n1, n2, n3, kk )

endif

enddo

else

do  axis = 1, 3

call sync_all()

call sync_all()

enddo

call zero3(u,n1,n2,n3)

endif

return

end

subroutine give3( axis, dir, u, n1, n2, n3, k )

use caf_intrinsics

implicit none

include 'cafnpb.h'

include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr

double precision u( n1, n2, n3 )

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir 

buff_len = 0

if( axis .eq.  1 )then

if( dir .eq. -1 )then

do  i3=2,n3-1

do  i2=2,n2-1

buff_len = buff_len + 1

buff(buff_len,buff_id ) = u( 2,  i2,i3)

enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) then

do  i3=2,n3-1

do  i2=2,n2-1

buff_len = buff_len + 1

buff(buff_len, buff_id ) = u( n1-1, i2,i3)

enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)

endif

endif

if( axis .eq.  2 )then

if( dir .eq. -1 )then

subroutine comm3(u,n1,n2,n3,kk)subroutine comm3(u,n1,n2,n3,kk)

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer n1, n2, n3, integer n1, n2, n3, kkkk

double precision u(n1,n2,n3)double precision u(n1,n2,n3)

integer axisinteger axis

if( .not. if( .not. dead(kkdead(kk) )then) )then

do  axis = 1, 3do  axis = 1, 3

if( if( nprocsnprocs .ne. 1) then.ne. 1) then

call sync_all()call sync_all()

call give3( axis, +1, u, n1, n2, n3, call give3( axis, +1, u, n1, n2, n3, kkkk ))

call give3( axis, call give3( axis, --1, u, n1, n2, n3, 1, u, n1, n2, n3, kkkk ))

call sync_all()call sync_all()

call take3( axis, call take3( axis, --1, u, n1, n2, n3 )1, u, n1, n2, n3 )

call take3( axis, +1, u, n1, n2, n3 )call take3( axis, +1, u, n1, n2, n3 )

elseelse

call comm1p( axis, u, n1, n2, n3, call comm1p( axis, u, n1, n2, n3, kkkk ))

endifendif

enddoenddo

elseelse

do  axis = 1, 3do  axis = 1, 3

call sync_all()call sync_all()

call sync_all()call sync_all()

enddoenddo

call zero3(u,n1,n2,n3)call zero3(u,n1,n2,n3)

endifendif

returnreturn

endend

subroutine give3( axis, dir, u, n1, n2, n3, k )subroutine give3( axis, dir, u, n1, n2, n3, k )

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer axis, dir, n1, n2, n3, k, integer axis, dir, n1, n2, n3, k, ierrierr

double precision u( n1, n2, n3 )double precision u( n1, n2, n3 )

integer i3, i2, i1, integer i3, i2, i1, buff_len,buff_idbuff_len,buff_id

buff_id = 2 + dir buff_id = 2 + dir 

buff_lenbuff_len = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_len,buff_idbuff(buff_len,buff_id ) = u( 2,  i2,i3)) = u( 2,  i2,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( n1, buff_id ) = u( n1--1, i2,i3)1, i2,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

endifendif

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,  2,i3), buff_id ) = u( i1,  2,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len,  buff_id )= u( i1,n2,  buff_id )= u( i1,n2--1,i3)1,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

endifendif

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,i2,2), buff_id ) = u( i1,i2,2)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,i2,n3, buff_id ) = u( i1,i2,n3--1)1)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

>      buff(1:buff_len,buff_id)>      buff(1:buff_len,buff_id)

endifendif

endifendif

returnreturn

endend

subroutine take3( axis, dir, u, n1, n2, n3 )subroutine take3( axis, dir, u, n1, n2, n3 )

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer axis, dir, n1, n2, n3integer axis, dir, n1, n2, n3

double precision u( n1, n2, n3 )double precision u( n1, n2, n3 )

integer buff_id, integer buff_id, indxindx

integer i3, i2, i1integer i3, i2, i1

buff_id = 3 + dirbuff_id = 3 + dir

indxindx = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(n1,i2,i3) = u(n1,i2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(1,i2,i3) = u(1,i2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,n2,i3) = u(i1,n2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,1,i3) = u(i1,1,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

if( dir .eq. if( dir .eq. --1 )then1 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,n3) = u(i1,i2,n3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

else if( dir .eq. +1 ) thenelse if( dir .eq. +1 ) then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,1) = u(i1,i2,1) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

endifendif

returnreturn

endend

subroutine comm1p( axis, u, n1, n2, n3, subroutine comm1p( axis, u, n1, n2, n3, kkkk ))

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer axis, dir, n1, n2, n3integer axis, dir, n1, n2, n3

double precision u( n1, n2, n3 )double precision u( n1, n2, n3 )

integer i3, i2, i1, integer i3, i2, i1, buff_len,buff_idbuff_len,buff_id

integer i, integer i, kkkk, , indxindx

dir = dir = --11

buff_id = 3 + dirbuff_id = 3 + dir

buff_lenbuff_len = nm2= nm2

do  i=1,nm2do  i=1,nm2

buff(i,buff_id) = 0.0D0buff(i,buff_id) = 0.0D0

enddoenddo

dir = +1dir = +1

buff_id = 3 + dirbuff_id = 3 + dir

buff_lenbuff_len = nm2= nm2

do  i=1,nm2do  i=1,nm2

buff(i,buff_id) = 0.0D0buff(i,buff_id) = 0.0D0

enddoenddo

dir = +1dir = +1

buff_id = 2 + dir buff_id = 2 + dir 

buff_lenbuff_len = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( n1, buff_id ) = u( n1--1, i2,i3)1, i2,i3)

enddoenddo

enddoenddo

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len,  buff_id )= u( i1,n2,  buff_id )= u( i1,n2--1,i3)1,i3)

enddoenddo

enddoenddo

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,i2,n3, buff_id ) = u( i1,i2,n3--1)1)

enddoenddo

enddoenddo

endifendif

dir = dir = --11

buff_id = 2 + dir buff_id = 2 + dir 

buff_lenbuff_len = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_len,buff_idbuff(buff_len,buff_id ) = u( 2,  i2,i3)) = u( 2,  i2,i3)

enddoenddo

enddoenddo

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,  2,i3), buff_id ) = u( i1,  2,i3)

enddoenddo

enddoenddo

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id ) = u( i1,i2,2), buff_id ) = u( i1,i2,2)

enddoenddo

enddoenddo

endifendif

do  i=1,nm2do  i=1,nm2

buff(i,4) = buff(i,3)buff(i,4) = buff(i,3)

buff(i,2) = buff(i,1)buff(i,2) = buff(i,1)

enddoenddo

dir = dir = --11

buff_id = 3 + dirbuff_id = 3 + dir

indxindx = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(n1,i2,i3) = u(n1,i2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,n2,i3) = u(i1,n2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,n3) = u(i1,i2,n3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

dir = +1dir = +1

buff_id = 3 + dirbuff_id = 3 + dir

indxindx = 0= 0

if( axis .eq.  1 )thenif( axis .eq.  1 )then

do  i3=2,n3do  i3=2,n3--11

do  i2=2,n2do  i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(1,i2,i3) = u(1,i2,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

if( axis .eq.  2 )thenif( axis .eq.  2 )then

do  i3=2,n3do  i3=2,n3--11

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,1,i3) = u(i1,1,i3) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

if( axis .eq.  3 )thenif( axis .eq.  3 )then

do  i2=1,n2do  i2=1,n2

do  i1=1,n1do  i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,1) = u(i1,i2,1) = buff(indxbuff(indx, buff_id ), buff_id )

enddoenddo

enddoenddo

endifendif

returnreturn

endend



param coeff: domain(1) = [0..3]; // for 4 unique weight values

param Stencil: domain(3) = [-1..1, -1..1, -1..1]; // 27-points

function rprj3(S, R) {

param w: [coeff] float = (/0.5, 0.25, 0.125, 0.0625/);

param w3d: [(i,j,k) in Stencil] float

= w((i!=0) + (j!=0) + (k!=0));

const SD = S.Domain,

Rstr = R.stride;

S = [ijk in SD] sum reduce [off in Stencil]

(w3d(off) * R(ijk + Rstr*off));

}

paramparam coeffcoeff: : domaindomain(1) = [0..3]; // (1) = [0..3]; // forfor 4 unique weight values4 unique weight values

paramparam Stencil: Stencil: domaindomain(3) = [(3) = [--1..1, 1..1, --1..1, 1..1, --1..1]; // 1..1]; // 2727--pointspoints

functionfunction rprj3(S, R) {rprj3(S, R) {

paramparam w: [w: [coeffcoeff] ] floatfloat = (/0.5, 0.25, 0.125, 0.0625/);= (/0.5, 0.25, 0.125, 0.0625/);

paramparam w3d: [(i,j,k) w3d: [(i,j,k) inin Stencil] Stencil] floatfloat

= w((i!=0) + (j!=0) + (k!=0));= w((i!=0) + (j!=0) + (k!=0));

constconst SD = S.Domain,SD = S.Domain,

RstrRstr = R.stride;= R.stride;

S = [S = [ijkijk inin SD] SD] sumsum reducereduce [off [off inin Stencil]Stencil]

(w3d(off) * (w3d(off) * R(ijkR(ijk + + RstrRstr*off));*off));

}}

Chapel 3D NAS MG Stencil rprj3

function rprj3(S,R) {function rprj3(S,R) {

const Stencil: domain(3) = [const Stencil: domain(3) = [--1..1, 1..1, --1..1, 1..1, --1..1],         // 1..1],         // 2727--pointspoints

w: [0..3]real = (/0.5, 0.25, 0.125, 0.0625/),       // ww: [0..3]real = (/0.5, 0.25, 0.125, 0.0625/),       // weightseights

w3d: [(i,j,k) in Stencil] = w((i!=0) + (j!=0) + (k!=0));w3d: [(i,j,k) in Stencil] = w((i!=0) + (j!=0) + (k!=0));

forallforall ijkijk in S.domain doin S.domain do

S(ijkS(ijk) = sum reduce [off in Stencil] (w3d(off) * ) = sum reduce [off in Stencil] (w3d(off) * R(ijkR(ijk + + R.strideR.stride*off));*off));

}}



Large-scale hierarchical architectural parallelism
0tens of  thousands to hundreds of thousands of processors 
0component failures may occur frequently

Extreme non-uniformity in data access

Applications: large, complex, and long-lived
0multi-disciplinary, multi-language, multi-paradigm
0dynamic, irregular, and adaptive
0survive many hardware generations portability is important

How to exploit the parallelism and locality provided by 
the architecture?
0automatic parallelization and locality management are not 

powerful enough to provide a general efficient solution 
0explicit support for control of parallelism and locality must be

provided by the programming model and the language

Large-scale hierarchical architectural parallelism
0tens of  thousands to hundreds of thousands of processors 
0component failures may occur frequently

Extreme non-uniformity in data access

Applications: large, complex, and long-lived
0multi-disciplinary, multi-language, multi-paradigm
0dynamic, irregular, and adaptive
0survive many hardware generations portability is important

How to exploit the parallelism and locality provided by 
the architecture?
0automatic parallelization and locality management are not 

powerful enough to provide a general efficient solution 
0explicit support for control of parallelism and locality must be

provided by the programming model and the language

Productivity Challenges for Peta-Scale Systems



Parallel Programming Models

Fragmented Models
0processor-centric view: code written from the viewpoint of single 

threads 
0local view of data segments

Single Program Multiple Data (SPMD) Model
0special class of fragmented model
0single program executed in multiple instances 

Global-view Models
0global view of data and computation

burden of partitioning shifts to compiler/runtime
user may guide this process via language constructs

Locality-aware Models
0features for mapping data and/or control to the architecture 

Fragmented Models
0processor-centric view: code written from the viewpoint of single 

threads 
0local view of data segments

Single Program Multiple Data (SPMD) Model
0special class of fragmented model
0single program executed in multiple instances 

Global-view Models
0global view of data and computation

burden of partitioning shifts to compiler/runtime
user may guide this process via language constructs

Locality-aware Models
0features for mapping data and/or control to the architecture 



HPF Language Family
0predecessors: CM-Fortran, Fortran D, Vienna Fortran
0High Performance Fortran (HPF): HPF-1 (1993); HPF-2(1997)
0successors: HPF+, HPF/JA

OpenMP
Partitioned Global Address Space (PGAS) Languages
0Co-Array Fortran
0UPC
0Titanium

High-Productivity Languages developed in the HPCS Program
0Chapel
0X10
0Fortress

Domain-Specific Languages and Abstractions

HPF Language Family
0predecessors: CM-Fortran, Fortran D, Vienna Fortran
0High Performance Fortran (HPF): HPF-1 (1993); HPF-2(1997)
0successors: HPF+, HPF/JA

OpenMP
Partitioned Global Address Space (PGAS) Languages
0Co-Array Fortran
0UPC
0Titanium

High-Productivity Languages developed in the HPCS Program
0Chapel
0X10
0Fortress

Domain-Specific Languages and Abstractions

Languages for High Performance Computing
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High-Productivity Computing Systems (HPCS) is a DARPA-sponsored 
program for the development of peta-scale architectures (2002-2010)

HPCS Languages
0 Chapel   (Cascade Project, led by Cray Inc.)
0 X10        (PERCS Project, led by IBM)
0 Fortress (HERO Project [until 2006], led by Sun Microsystems)

These are new, memory-managed, object-oriented languages
0global view of data and computation generally no distinction 

between local and remote data access in the source code
0support for explicit data and task parallelism
0explicit locality management
0Chapel is unique in that it provides user-defined data distributions

High-Productivity Computing Systems (HPCS) is a DARPA-sponsored 
program for the development of peta-scale architectures (2002-2010)

HPCS Languages
0 Chapel   (Cascade Project, led by Cray Inc.)
0 X10        (PERCS Project, led by IBM)
0 Fortress (HERO Project [until 2006], led by Sun Microsystems)

These are new, memory-managed, object-oriented languages
0global view of data and computation generally no distinction 

between local and remote data access in the source code
0support for explicit data and task parallelism
0explicit locality management
0Chapel is unique in that it provides user-defined data distributions

HPCS Languages 
global view of data, global control



Chapel Language Concepts
http://chapel.cs.washington.edu

Explicit high-level control of parallelism
0data parallelism

domains, arrays, indices: support distributed data aggregates
forall loops and iterators: express data parallel computations

0 task parallelism
cobegin statements: specify task parallel computations
synchronization variables, atomic sections

Explicit high-level control of locality
0“locales”: abstract units of locality
0data distributions: map data domains to sets of locales
0on clauses: map execution components to sets of locales 

Close relationship to mainstream languages
0object-oriented
0 type inference and generic programming
0modules for Programming-in-the-Large

Explicit high-level control of parallelism
0data parallelism

domains, arrays, indices: support distributed data aggregates
forall loops and iterators: express data parallel computations

0 task parallelism
cobegin statements: specify task parallel computations
synchronization variables, atomic sections

Explicit high-level control of locality
0“locales”: abstract units of locality
0data distributions: map data domains to sets of locales
0on clauses: map execution components to sets of locales 

Close relationship to mainstream languages
0object-oriented
0 type inference and generic programming
0modules for Programming-in-the-Large

Note: Some of the features discussed in the following have the status of research
proposals and are currently not part of the official Chapel language specification



Example: Jacobi Relaxation in Chapel

const L:[1..p,1..q] locale = reshape(Locales);

const n= …, epsilon= …;
const DD:domain(2)=[0..n+1,0..n+1] distributed(block,block)on L;

D: subdomain(DD) = [1..n, 1..n];
var delta: real;
var A, Temp: [DD] real; /*array declarations over domain DD */

A(0,1..n) = 1.0;

do {
forall (i,j) in D {  /* parallel iteration over domain D */

Temp(i,j) = (A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))/4.0;
delta = max reduce abs(A(D) – Temp(D));
A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);



Example: Jacobi Relaxation in Chapel

const L:[1..p,1..q] locale = reshape(Locales);

const n= …, epsilon= …;
const DD:domain(2)…distributed(block,block on L;

D: subdomain(DD) = [1..n, 1..n];
var delta: real;
var A, Temp: [DD] real;

A(0,1..n) = 1.0;

do {
forall (i,j) in D {

Temp(i,j) = (A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))/4.0;
delta = max reduce abs(A(D) – Temp(D));
A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);

Locale Grid L

Key Features
•global view of data/control
•explicit parallelism (forall)
•high-level locality control
•NO explicit communication
•NO local/remote distinction

in source code



Task Creation
cobegin { S1,…Sn}          executes the Si in parallel (i = 1,…n)

Task Localization
on L(i,j) do f(A(i,j))            executes f(A(i,j) on locale L(i,j)

Task Synchronization
- atomic sections
- sync variables
- single-assignment variables

Task Creation
cobegin { S1,…Sn}          executes the Si in parallel (i = 1,…n)

Task Localization
on L(i,j) do f(A(i,j))            executes f(A(i,j) on locale L(i,j)

Task Synchronization
- atomic sections
- sync variables
- single-assignment variables

Task Parallelism in Chapel
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Aspects of Locality

Locale: an abstract    
unit of locality                



Chapel’s Framework for                         
User-Defined Distributions

Provides functionality for: 
0distributing index sets across locales
0arranging data within a locale 
0defining specialized distribution libraries

This capability is in its effect similar to function specification
0unstructured meshes
0multi-block problems
0multi-grid problems
0distributed sparse matrices

Provides functionality for: 
0distributing index sets across locales
0arranging data within a locale 
0defining specialized distribution libraries

This capability is in its effect similar to function specification
0unstructured meshes
0multi-block problems
0multi-grid problems
0distributed sparse matrices



Locality Control in Chapel: Basic Concepts

Domain: first class entity
0 components: index set, distribution, associated arrays, iterators

Array—Mapping from a Domain to a Set of Variables
Framework for User-Defined Distributions: three levels
1. naïve use of a predefined library distribution (block, cyclic, indirect,…)
2. specification of a distribution by

global mapping: index set locales
interface for the definition of mapping, distribution segments, iterators
system-provided default functionality can be overridden by user

3.   specification of a distribution by global mapping and
layout mapping: index set locale data space

High-Level Control of Communication
0 user-defined specification of halos; communication assertions

Domain: first class entity
0 components: index set, distribution, associated arrays, iterators

Array—Mapping from a Domain to a Set of Variables
Framework for User-Defined Distributions: three levels
1.1. nanaïïve use of a predefined library distribution (block, cyclic, indive use of a predefined library distribution (block, cyclic, indirect,rect,……))
2.2. specification of a distribution byspecification of a distribution by

global mapping: index set locales
interface for the definition of mapping, distribution segments, iterators
system-provided default functionality can be overridden by user

3.   specification of a distribution by global mapping andspecification of a distribution by global mapping and
layout mapping: index set locale data space

High-Level Control of Communication
0 user-defined specification of halos; communication assertions



User-Defined Distributions:
Global Mapping

class MyC: Distribution {
const z:int;                                /* block size */
const ntl:int;                              /* number of target locales*/

function map(i:index(source)):locale {      /* global mapping for MyC */
return Locales(mod(ceil(i/z-1)+1,ntl));

}

class MyB: Distribution {
var bl:int = ...;                           /* block length */

function map(i: index(source)):locale {     /* global mapping for MyB */
return Locales(ceil(i/bl));

}
}

const D1C: domain(1) distributed(MyC(z=100))=1..n1;
const D1B: domain(1) distributed(MyB) on Locales(1..num_locales/10)=1..n1;
var A1: [D1C] real;
var A2: [D1B] real;

/* declaration of distribution classes MyC and MyB: */

/* use of distribution classes MyC and MyB in declarations: */



Example: Banded Distribution
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Diagonal A/d = { A(i,j) | d=i+j }

bw = 3  (bandwidth)

p=4 (number of locales)

Distribution—global map:

Blocks of bw diagonals are  
cyclically mapped to locales

Layout:
Each diagonal is represented
as a one-dimensional dense  
array. Arrays in a locale are   
referenced by a pointer array
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User-Defined Specification of halo (ghost cells)

Compiler/Runtime System
0allocates local images of remote data
0defines mapping between remote objects and their images

Halo Management
0update
0 flush
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User-Defined Halos
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PGAS Language Overview

Partitioned Global Address Space (PGAS) languages 
are based on the SPMD model

Providing a shared-memory, global view, of data, 
combined with support for locality
0global address space is logically partitioned, with each portion

mapped to a processor
0single-sided shared-memory communication (instead of MPI-style 

message passing)
0in general, local and remote references distinguished in the source 

code
0implemented via one-sided communication libraries (e.g., GASNet)

Local control of execution via processor-centric view

Main representatives: Co-Array Fortran (CAF), Unified 
Parallel C (UPC), Titanium

Partitioned Global Address Space (PGAS) languages 
are based on the SPMD model

Providing a shared-memory, global view, of data, 
combined with support for locality
0global address space is logically partitioned, with each portion

mapped to a processor
0single-sided shared-memory communication (instead of MPI-style 

message passing)
0in general, local and remote references distinguished in the source 

code
0implemented via one-sided communication libraries (e.g., GASNet)

Local control of execution via processor-centric view

Main representatives: Co-Array Fortran (CAF), Unified 
Parallel C (UPC), Titanium

Support for global view of data, but local control



General-purpose languages are limited in their ability to 
accommodate the abstractions of a scientific domain

Domain-specific languages provide abstractions tailored 
to a specific domain
0narrowing of the semantic gap between the programming 

language and the application domain
0separation of domain expertise from parallelization and resource 

management

Domain-specific knowledge can be used to improve 
program analysis and support V&V and fault tolerance.

Telescoping supports the automatic generation of 
domain-specific languages by generating specialized, 
optimized versions of libraries
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0separation of domain expertise from parallelization and resource 

management

Domain-specific knowledge can be used to improve 
program analysis and support V&V and fault tolerance.

Telescoping supports the automatic generation of 
domain-specific languages by generating specialized, 
optimized versions of libraries

Domain-Specific Languages
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Legacy Code Migration

(Semi) Automatic Tuning
0closed loop adaptive control: measurement, decision-making, 

actuation
0information exposure: users, compilers, runtime systems
0learning from experience: databases, data mining, reasoning 

systems

Fault Tolerance
0massive parallelism poses new reliability problems
0fault anticipation, detection, localization, analysis, and recovery

Legacy Code Migration

(Semi) Automatic Tuning
0closed loop adaptive control: measurement, decision-making, 

actuation
0information exposure: users, compilers, runtime systems
0learning from experience: databases, data mining, reasoning 

systems

Fault Tolerance
0massive parallelism poses new reliability problems
0fault anticipation, detection, localization, analysis, and recovery

Issues in Programming Environments



Rewriting Legacy Codes
0preservation of intellectual content
0performance portability: exploit new hardware and new algorithms
0code size may preclude complete rewrite: incremental porting

Language, compiler, tool, and runtime support
0(semi) automatic tools for migrating code
0translation of performance-critical sections requires highly-

sophisticated software for automatic adaptation 
reverse engineering of the original program
static analysis, using domain and/or architecture-specific knowledge
pattern matching and concept comprehension
optimizing code generation guided by the target architecture
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0code size may preclude complete rewrite: incremental porting

Language, compiler, tool, and runtime support
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0translation of performance-critical sections requires highly-
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reverse engineering of the original program
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pattern matching and concept comprehension
optimizing code generation guided by the target architecture

Legacy Code Migration
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Offline Performance Tuning

Application Execution



Neptune Triton 
Explorer

Europa Astrobiology 
LaboratoryTitan Explorer

Europa

Mars Sample Return

Explorer            

Autonomy and Fault Tolerance for                        
High-Performance Space-Borne Computing

Future missions need Autonomy and High-Capability On-Board Computing:
this can be accomplished by extending traditional spacecraft architectures
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High-Capability On-Board System: 
An Example

Fault tolerance for the HPCS component—protecting it 
against  transient faults—is a specific concern for this model



Introspection…
provides dynamic monitoring, analysis, and feedback, 
enabling system to become self-aware and context-aware: 
0monitoring execution behavior
0reasoning about its internal state
0changing the system or system state when necessary

exploits adaptively the available threads

can be applied to different scenarios, including:
0fault tolerance
0performance tuning
0power management
0behavior analysis
0intrusion detection

IntrospectionIntrospection……
provides provides dynamicdynamic monitoring, analysis, and feedback, monitoring, analysis, and feedback, 
enabling system to become selfenabling system to become self--aware and contextaware and context--aware: aware: 
0monitoring execution behavior
0reasoning about its internal state
0changing the system or system state when necessary

exploits adaptively the available threadsexploits adaptively the available threads

can be applied to different scenarios, including:can be applied to different scenarios, including:
0fault tolerance
0performance tuning
0power management
0behavior analysis
0intrusion detection

A Framework for Introspection



An Introspection Module (IM)

Application

Introspection System    
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Recovery

Prognostics

Knowledge
Base     

System       
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Application   
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Domain         
Knowledge      

…

For hierarchically structured architectures,
a corresponding hierarchy of introspection
modules will be constructed



HPCS languages constitute an important step towards high-productivity 
programming for massively parallel peta-scale architectures

Acceptance of a new language depends on many criteria, including:
0 functionality and target code performance
0mature, industrial-strength compiler and runtime system technology
0easy integration/migration of legacy codes
0 familiarity of users with conventional features
0 flexibility to deal with new hardware developments

Many research challenges remain
0high-level language features for multi-threading 
0architecture- and application-adaptive compilation and runtime systems that 

employ intelligent search strategies (ATLAS-like)
0 intelligent tools and middleware that provide efficient support for program 

development, performance tuning, fault tolerance, and power management  
0performance-porting of legacy applications 

HPCS languages constitute an important step towards high-productivity 
programming for massively parallel peta-scale architectures

Acceptance of a new language depends on many criteria, including:
0 functionality and target code performance
0mature, industrial-strength compiler and runtime system technology
0easy integration/migration of legacy codes
0 familiarity of users with conventional features
0 flexibility to deal with new hardware developments

Many research challenges remainMany research challenges remain
0high-level language features for multi-threading 
0architecture- and application-adaptive compilation and runtime systems that 

employ intelligent search strategies (ATLAS-like)
0 intelligent tools and middleware that provide efficient support for program 

development, performance tuning, fault tolerance, and power management  
0performance-porting of legacy applications 

Conclusion



Example         
BRD Distribution with CRS Layout

class BRD: Distribution {
…

function map(i:index(source)):locale{…}; /* global mapping for dense domain */
function GetDistributionSegment(loc:locale):domain(1){…};  /* “box” for loc */ 
…

}

class CRS: LocalSegment {
const loc: locale = this.getLocale(); 
/* declaration of dense and sparse distribution segment for locale loc: */

const locD: domain(2);  
const locDD: sparse domain(locD) = GetDistributionSegment(loc); 
…

const LocalDomain:  domain(1)=1..nnz;    /* local data domain */
/* persistent data structures in the local segment: */

var cx: [LocalDomain] index(locD(2));    /* column index vector */
var ro: [l1..u1+1] index(xLocalDomain);  /* row vector */
…

function define_column_vector(): {[z in LocalDomain] cx(z)=nz2x(z)(2)}
function define_row_vector(): {…}
…

/* mapping global index to index in local data domain: */
function    layout(i: index(D)): index(LocalDomain) return(x2nz(i))
constructor LocalSegment(){define_column_vector(); define_row_vector(); }

}



Implementation Target Architecture:
Cluster of Cell Broadband Engines  
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Fault tolerance must be applied across all levels of the system hierarchy:

SPE PPE CBE Cluster 



Introspection sensors yield information about the 
execution of the application:
Hardware Monitors
0 accumulators: counting standard events (cache misses, loads, FP ops,..) 
0 timers: analysis of latencies and stalls
0 programmable watch events for special conditions 

Low-level Software Monitoring (at message-passing level)
0 waiting times for blocking send and receive
0 communication transfer times
0 barrier synchronization times
0 …

High-Level Software Monitoring (at the level of  a high-level 
language)
0 timing for redistribution of a globally distributed collection
0 timing for function invocation, loop, or program region
0 timing for computing a communication schedule (“inspector”)
0 evaluation of assertions and invariants
0 …

Introspection Introspection sensorssensors yield information about the yield information about the 
execution of the application:execution of the application:
Hardware MonitorsHardware Monitors
0 accumulators: counting standard events (cache misses, loads, FP ops,..) 
0 timers: analysis of latencies and stalls
0 programmable watch events for special conditions 

LowLow--level Software Monitoringlevel Software Monitoring (at message(at message--passing level)passing level)
0 waiting times for blocking send and receive
0 communication transfer times
0 barrier synchronization times
0 …

HighHigh--Level Software Monitoring Level Software Monitoring ((at the level of  a highat the level of  a high--level level 
language)language)
0 timing for redistribution of a globally distributed collection
0 timing for function invocation, loop, or program region
0 timing for computing a communication schedule (“inspector”)
0 evaluation of assertions and invariants
0 …

Case Study: Introspection Sensors
for Performance Tuning



Introspection actuators provide mechanisms, data, and 
control paths for implementing feedback to the application, 
depending on results of analysis and prediction: 

Instrumentation and Measurement Retargeting

Resource Reallocation

Computational Steering
0 changing the implementation of an application section 

changing a function implementation by choosing a more efficient algorithm
changing the implementation of a loop
changing the distribution of key data structures, with the goal of load balancing 

Program Restructuring and Recompilation (offline)

Introspection Introspection actuatorsactuators provide mechanisms, data, and provide mechanisms, data, and 
control paths for implementing feedback to the application, control paths for implementing feedback to the application, 
depending on results of analysis and prediction: depending on results of analysis and prediction: 
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Computational SteeringComputational Steering
0 changing the implementation of an application section 

changing a function implementation by choosing a more efficient algorithm
changing the implementation of a loop
changing the distribution of key data structures, with the goal of load balancing 

Program Restructuring and Recompilation (offline)Program Restructuring and Recompilation (offline)

Case Study: Introspection Actuators
for Performance Tuning



1. Dense Linear Algebra (BLAS, ScaLAPACK,MATLAB)

2. Sparse Linear Algebra (SpMV, SuperLU)

3. Spectral Methods (FFT)

4. N-Body Methods (Barnes-Hut, Fast Multipole)

5. Structured Grids (Cactus, Magneto-Hydrodynamics)

6. Unstructured Grids (ABAQUS,FIDAP)

7. Monte Carlo

8. Combination Logic (Encryption; Cyclic Redundancy Codes—CRC)

9. Graph Traversal (Quicksort)

10. Dynamic Programming 

11. Backtrack and Branch and Bound

12. Construction of graphical models (Bayesian networks, Hidden Markov Models)

13. Finite State Machines

1.1. Dense Linear Algebra (BLAS, Dense Linear Algebra (BLAS, ScaLAPACK,MATLABScaLAPACK,MATLAB))

2.2. Sparse Linear Algebra (Sparse Linear Algebra (SpMVSpMV, , SuperLUSuperLU))

3.3. Spectral Methods (FFT)Spectral Methods (FFT)

4.4. NN--Body Methods (BarnesBody Methods (Barnes--Hut, Fast Hut, Fast MultipoleMultipole))

5.5. Structured Grids (Cactus, MagnetoStructured Grids (Cactus, Magneto--Hydrodynamics)Hydrodynamics)

6.6. Unstructured Grids (ABAQUS,FIDAP)Unstructured Grids (ABAQUS,FIDAP)

7.7. Monte CarloMonte Carlo

8.8. Combination Logic (Encryption; Cyclic Redundancy CodesCombination Logic (Encryption; Cyclic Redundancy Codes——CRC)CRC)

9.9. Graph Traversal (Graph Traversal (QuicksortQuicksort))

10.10. Dynamic Programming Dynamic Programming 

11.11. Backtrack and Branch and BoundBacktrack and Branch and Bound

12.12. Construction of graphical models (Bayesian networks, Hidden MarkConstruction of graphical models (Bayesian networks, Hidden Markov Models)ov Models)

13.13. Finite State MachinesFinite State Machines

Berkeley’s 7 +6 Dwarfs 



The Traditional Approach will not Scale

Traditional approach based on rad-hard processors and fixed 
redundancy (e.g.,Triple Modular Redundancy—TMR)
0Current Generation (Phoenix and Mars Science Lab –’09 Launch)

Single BAE Rad 750 Processor
256 MB of DRAM and 2 GB Flash Memory (MSL)
200 MIPS peak, 14 Watts available power (14 MIPS/W)

0ST8 Honeywell Dependable Multiprocessor
COTS system with Rad 750 controller (100 MIPS) and IBM PowerPC 750FX (1300 MIPS)
120 MIPS/Watt Performance
Fault tolerant architecture 

Rad-hard processors today lag commercial architectures by a factor 
of about 100 (and growing)

By 2015:  a single rad-hard processor may deliver about  1 GF—
orders of magnitude below requirements 

COTS-based multicore systems will be able to provide the required 
capability, but there are serious issues to be addressed…
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By 2015:  a single By 2015:  a single radrad--hard processor may deliver about  1 GFhard processor may deliver about  1 GF——
orders of magnitude below requirements orders of magnitude below requirements 

COTSCOTS--based based multicoremulticore systems will be able to provide the required systems will be able to provide the required 
capability, but there are serious issues to be addressedcapability, but there are serious issues to be addressed……



Introspection versus Traditional V&V 

Introspection 
0focuses on execution time monitoring, analysis, recovery
0actual work considers transient and hard faults, not design errors

Verification & Validation: 
0focuses on design errors
0is applied before actual program execution

Verification has the goal to prove that a program 
conforms to its specification for all legal inputs

Test proves or disproves correctness of the program for 
specific (range of) inputs

Both verification and test are not complete: 
0problems may be undecidable or intractable
0tests can prove existence of faults, not their total absence  
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specific specific (range of) inputs(range of) inputs
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00problems may be problems may be undecidableundecidable or intractableor intractable
00tests can prove existence of faults, not their total absence  tests can prove existence of faults, not their total absence  



1. Dense Linear Algebra (BLAS, ScaLAPACK,MATLAB)

2. Sparse Linear Algebra (SpMV, SuperLU)

3. Spectral Methods (FFT)

4. N-Body Methods (Barnes-Hut, Fast Multipole)

5. Structured Grids (Cactus, Magneto-Hydrodynamics)

6. Unstructured Grids (ABAQUS,FIDAP)

7. Monte Carlo

8. Combination Logic (Encryption; Cyclic Redundancy Codes—CRC)

9. Graph Traversal (Quicksort)

10. Dynamic Programming 

11. Backtrack and Branch and Bound

12. Construction of graphical models (Bayesian networks, Hidden Markov Models)

13. Finite State Machines
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13.13. Finite State MachinesFinite State Machines

Key Applications for Future Architectures: 
Berkeley’s “Dwarfs”



Automatic Vectorization and Parallelization
0automatic vectorization (for inner loops) and parallelization (for SMPs) 

were successful in limited contexts
0 in general, automatic parallelization is essentially intractable

Data parallel languages for MPPs and clusters 
0pioneered by compiler projects at Caltech (Cosmic Cube) and U of Bonn 

(SUPERB Fortran parallelizer)
0key features of data parallel languages

global name space
single thread of control
loosely synchronous parallel computation
automatic generation of communication

0key language developments
IVTRAN (1973) – for the SIMD ILLIAV IV – first language to allow control of data 
layout
MPP languages: Kali, Fortran D, Vienna Fortran, Connection Machine Fortran
High Performance Fortran (HPF) result of a standardization effort

Automatic Vectorization and Parallelization
0automatic vectorization (for inner loops) and parallelization (for SMPs) 
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0 in general, automatic parallelization is essentially intractable

Data parallel languages for MPPs and clusters 
0pioneered by compiler projects at Caltech (Cosmic Cube) and U of Bonn 

(SUPERB Fortran parallelizer)
0key features of data parallel languages

global name space
single thread of control
loosely synchronous parallel computation
automatic generation of communication

0key language developments
IVTRAN (1973) – for the SIMD ILLIAV IV – first language to allow control of data 
layout
MPP languages: Kali, Fortran D, Vienna Fortran, Connection Machine Fortran
High Performance Fortran (HPF) result of a standardization effort

Early Alternatives to MPI



Sensors and actuators link the introspection framework to 
the application and the environment
Sensors: provide input to the introspection system
Examples for sensor-provided inputs:
0state of a variable, data structure, synchronization object
0value of an assertion
0state of a temperature sensor or hardware counter

Actuators: provide feedback from the introspection system
Examples for actuator-triggered actions:
0modification of program components (methods and data)
0modification of sensor/actuator sets (including activation and deactivation) 
0 local recovery
0signaling fault to next higher level in a hierarchical system
0 requesting actions from lower levels in a hierarchical system

SensorsSensors and and actuatorsactuators link the introspection framework to link the introspection framework to 
the application and the environmentthe application and the environment
SensorsSensors: provide : provide inputinput to the introspection systemto the introspection system
Examples for sensorExamples for sensor--provided inputs:provided inputs:
0state of a variable, data structure, synchronization object
0value of an assertion
0state of a temperature sensor or hardware counter

ActuatorsActuators: provide : provide feedbackfeedback from the introspection systemfrom the introspection system
Examples for actuatorExamples for actuator--triggered actions:triggered actions:
0modification of program components (methods and data)
0modification of sensor/actuator sets (including activation and deactivation) 
0 local recovery
0signaling fault to next higher level in a hierarchical system
0 requesting actions from lower levels in a hierarchical system

Sensors and Actuators



Application-Aware Fault Detection   
Assertions: Examples

Assertions based on general program structures
0values and value ranges for variables, subscript expressions, pointers
0sequential and parallel control flow patterns
0 locality and communication assertions
0 independence assertions for data-parallel loops
0 real-time constraints
0safety and liveness properties

Domain-specific assertions: exploiting knowledge about:
0 target system: hardware and software
0application domain

libraries: pre- and post conditions, argument constraints
data structure invariants
control constraints
data representation and distribution knowledge (e.g., CRS for distributed 
sparse matrices)
communication patterns and schedules for parallel constructs

Assertions based on general program structures
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0sequential and parallel control flow patterns
0 locality and communication assertions
0 independence assertions for data-parallel loops
0 real-time constraints
0safety and liveness properties

Domain-specific assertions: exploiting knowledge about:
0 target system: hardware and software
0application domain

libraries: pre- and post conditions, argument constraints
data structure invariants
control constraints
data representation and distribution knowledge (e.g., CRS for distributed 
sparse matrices)
communication patterns and schedules for parallel constructs
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Transient Faults
SEUs and MBUs are radiation-induced transient hardware 
errors, which may corrupt software in multiple ways:
0 instruction codes and addresses
0user data structures
0synchronization objects
0protected OS data structures
0synchronization and communication

Potential effects include:
0wrong or illegal instruction codes and addresses
0wrong user data in registers, cache, or DRAM
0buffer overflows
0control flow errors
0unwarranted exceptions
0hangs and crashes
0synchronization  and communication faults
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0user data structures
0synchronization objects
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0synchronization and communication

Potential effects include:Potential effects include:
0wrong or illegal instruction codes and addresses
0wrong user data in registers, cache, or DRAM
0buffer overflows
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0synchronization  and communication faults



Basic Parallel Architecture Paradigms

Control Unit

P

LM

…

Interconnection Network

CPU …

…MM MM

Interconnection Network

P

LM

CPU

node

LM

…

Interconnection Network

node

LM

Single-Instruction-Multiple-Data (SIMD)

ILLIAC IV, DAP, BSP, CM-1, CM-2, MasPar MP-1…

Symmetric Multiprocessors (SMP)
Uniform Memory Access (UMA)

Alliant FX, Digital VAX 8800, Sequent Balance,…

Distributed-Memory Multiprocessors 

Non-Uniform Memory Access (NUMA)
Cosmic Cube, Suprenum, Transputers,…

Hardware implementation of a data parallel
model of computation

Vector Computers
Cray 1, Cyber 205, …

(MPPs)

In modern multicore-based architectures, such building blocks
may be hierarchically combined in many different configurations

Clusters



Let I denote the index set of a domain, and L the index domain for a set locales.         
A data distribution

 δ: I L
 is a total function that specifies for each element  in I an associated locale 

Let I1,I2,  denote index domains. An alignment from I1 to I2, is a total function                
α: I1 I2

that associates an index in I2, with every index of I1. If I2 has a distribution, δ2,
then a distribution, δ1, for I1,  is obtained as δ1 = δ2 ο α

Affinity between distributed data and threads can be formalized in a similar way
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 is a total function that specifies for each element  in I an associated locale 

Let I1,I2,  denote index domains. An alignment from I1 to I2, is a total function                
α: I1 I2

that associates an index in I2, with every index of I1. If I2 has a distribution, δ2,
then a distribution, δ1, for I1,  is obtained as δ1 = δ2 ο α

Affinity between distributed data and threads can be formalized in a similar way

Distributions: Outline of a Formal Framework
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Concept influenced by HPF templates, ZPL regions

Domains are first-class objects

Domain components
0index set
0distribution
0set of arrays 

Index sets are general sets of “names”
0Cartesian products of integer intervals (as in Fortran95 etc.)
0sparse subsets of Cartesian products
0sets of  object instances, e.g., for graph-based data structures

Iterators based on domains

Concept influenced by HPF templates, ZPL regions

Domains are first-class objects

Domain components
0index set
0distribution
0set of arrays 

Index sets are general sets of “names”
0Cartesian products of integer intervals (as in Fortran95 etc.)
0sparse subsets of Cartesian products
0sets of  object instances, e.g., for graph-based data structures

Iterators based on domains

Domains



param n_spe = 8;                   /* number of synergistic processors (SPEs) */
const SPE:[1..n_spe] locale;       /* declaration of SPE array */ 

var A: [1..m,1..n] real distributed(block,*) on SPE;
var x: [1..n] real replicated           on SPE;
var y: [1..m]      real distributed(block)   on SPE;

y = sum reduce(dim=2) forall (i,j) in [1..m,1..n] A(i,j)*x(j);

(original)(original)
ChapelChapel
versionversion

Example: Possible Extensions for the CELL
Matrix-Vector Multiply 

var A: [1..m,1..n] real;
var x: [1..n] real;
var y: [1..m]      real;

y = sum reduce(dim=2) forall (i,j) in [1..m,1..n] A(i,j)*x(j);

Chapel withChapel with
(implicit)(implicit)

heterogeneous  heterogeneous  
semanticssemantics
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param n_spe = 8;                  /* number of synergistic processors (SPEs) */
const SPE:[1..n_spe] locale;              /* declaration of SPE locale array */ 
const PPE: locale                               /* declaration of PPE locale */

var A: [1..m,1..n] real on PPE linked(AA) distributed(block,*) on SPE;
var x: [1..n] real on PPE linked(xx) replicated           on SPE;
var y: [1..m]      real on PPE linked(yy) distributed(block)   on SPE;

AA=A; xx=x; /* copy and distribute A, x to SPEs */
yy=sum reduce(dim=2) forall (i,j) in [1..m,1..n] on locale(xx(j)) AA(i,j)*xx(j);
y=yy;                                                 /* copy yy back to PPE */

Example
Matrix-Vector Multiply on the CELL: V2

Chapel/HETMC withChapel/HETMC with
explicit transfers   explicit transfers   
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User-Defined Distributions: Global Mapping(2) 

class MyC1: Distribution {                   /* cyclic(1) */
const ntl:int;                             /* number of target locales */
function map(i:index(source)):locale {     /* global mapping for MyC1 */
return Locales(mod(i-1,ntl)+1);

}

iterator DistSegIterator(loc: index(target)): index(source) {
const N: int = getSource().extent;
const k: int = locale_index(loc);
for i in k..N by ntl { yield(i); }
}

function GetDistributionSegment(loc: index(target)): Domain {
const N: int = getSource().extent;
const k: int = locale_index(loc);
return (k..N by ntl);
} 

}

const D1C1: domain(1) distributed(MyC1()) on Locales(1..4)=1..16;
var A1: [D1C1] real;
...

/* declaration of distribution class MyC1: */

/* set of local iterators : */

/* distribution segment : */

/* use of distribution class MyC1 in declarations: */



Approach based on a (mission-dependent) fault model
0 classifies faults (fault types, severity)
0 specifies fault probabilities, depending on environment
0 prescribes recovery actions

Addressing fault detection, analysis, isolation, recovery

Exploiting knowledge from different sources
0 automatic generation of assertions based on:

static analysis and profiling
properties of target system hardware and software
application domain (libraries, data structures, data distributions)

0 user-provided assertions and invariants

Leveraging existing technology
0 fixed-redundancy for small critical areas in a program  
0 Algorithm-Based Fault Tolerance (ABFT): standard matrix methods
0 integration of high-level generator systems such as CMU’s “SPIRAL”
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An Approach to Application-Oriented 
Introspection-Based Fault Tolerance in the HPCS



X10 --- the IBM HPCS Language
0object-oriented; serial sublanguage based on Java
0an array sublanguage supports the distribution of multi-

dimensional arrays via standard methods
0sequential and parallel iterators, either local or global
0asynchronous activities   

Fortress --- the SUN HPCS Language
0object-oriented, with some relationship to Java
0supports Unicode and conventional mathematical notation: 

e.g.,       y  =  a sin 2 x + cos 2 x log log x        
0strong security model
0support for language “growth” via inclusion of libraries
0by default, arrays are distributed and loops are parallel
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e.g.,       y  =  a sin 2 x + cos 2 x log log x        
0strong security model
0support for language “growth” via inclusion of libraries
0by default, arrays are distributed and loops are parallel

X10 and Fortress: Some Key Properties



Co-Array Fortran
Extension of Fortran to allow SPMD-style programming
Introduces a new type of array dimension (co-array) to 
refer to the cooperating instances (“images”) of an 
SPMD program, making processor boundaries explicit:

this introduces a shared co-array a with n*m integers 
local to each processor image
Non-local variables can be directly referenced based on 
a corresponding syntax extension:

references the first row of co-array a in processor p
a barrier provides synchronization between images

Extension of Fortran to allow SPMD-style programming
Introduces a new type of array dimension (co-array) to 
refer to the cooperating instances (“images”) of an 
SPMD program, making processor boundaries explicit:

this introduces a shared co-array a with n*m integers 
local to each processor image
Non-local variables can be directly referenced based on 
a corresponding syntax extension:

references the first row of co-array a in processor p
a barrier provides synchronization between images

integer :: a(n.m) [*]

a(1,:) [p]



UPC

Support for a global address space model for SPMD 
parallel programs, in which threads share part of their 
address space

The shared space is logically partitioned into fragments, 
each of which is associated with a thread

Shared arrays are distributed in block-cyclic fashion 
among threads

The upc_forall construct supports work sharing for a 
parallel loop

Additional features include special constructs for 
pointers (private/shared), non-blocking barriers, and 
collective operations
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Example: PGAS vs. HPCS
Setting up a block-distributed array in Titanium vs. Chapel

myBlock

blocksP0

myBlock

blocksP1

myBlock

blocksP2

// determine parameters of local block:
Point<3> startCell = myBlockPos * numCellsPerBlockSide;
Point<3> endCell = startCell + (numCellsPerBlockSide-[1,1,1]);

//create local myBlock array:
double [3d] myBlock = new double[startCell:endCell];

//build the distributed structure:
//declare blocks as 1D-array of references (one element per processor)
blocks.exchange(myBlock);

Source: K.Yelick et al.: Parallel Languages and Compilers: Perspective from the Titanium Experience

const D: domain(3) distributed (block) 
= [l1..u1,l2..u2,l3..u3];

…
var A: [D] real;
…

Titanium Code Fragment Chapel Code Fragment

Titanium: a dialect of Java that supports distributed multi-dimensional arrays,
iterators, subarrays, and synchronization/communication primitives


