JPL

High-Productivity Languages
for

Peta-Scale Computing

Hans P. Zima

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
and

University of Vienna, Austria
zima@jpl.nasa.gov

Fujitsu HPC Forum 2008
Tokyo, Japan, August 27t, 2008

JBL Contents

N o O A~ w0 Db

Introduction

Emerging Architectures and Applications
Towards High Productivity Programming
The High Productivity Language Chapel
Alternative Language Approaches

Issues in Programming Environments

Concluding Remarks

JPL The Meaning of “High-Productivity”

¢ “High productivity” implies three properties:

1.
2.
3.

human-centric: programming at a high level of abstraction
high-performance: providing “abstraction without guilt”
reliability

¢ Raising the level of abstraction is acceptable only if
target code performance is not significantly reduced

¢ This relates to a broad range of topics:

language design

architecture- and application-adaptive compiler technology
operating and runtime systems

library design and optimization

intelligent tool development

fault tolerance

JPL High-Productivity

Programming and Execution Models

Programming
Model

Semantics

conceptual view of | Productivity
data and control Model

realizations

Programming @ -
Language -

Programming

Language
+

Directives

Execution
Model

abstract machine

Command-line
Interface

JBL Contents

N o 0o A~ W M P

Introduction

Emerging Architectures and Applications
Towards High Productivity Programming
The High Productivity Language Chapel
Alternative Language Approaches

Issues Iin Programming Environments
Concluding Remarks

¢ The era of faster sequential processors is over—exponential growth
of frequency can no longer be maintained
- CMOS manufacturing technology approaches physical limits
- power wall, memory wall, instruction-level parallelism (ILP) wall

- Moore’s Law still in force: number of transistors on chip increasing

¢ Multicore technology provides continued performance growth
- amulticore chip is a single chip with two or more independent processing units
- improvements by multiple cores on a chip rather than higher frequency
- on-chip resource sharing for cost and performance benefits

¢ Multicore systems have been produced since 2000
- IBM Power 4; Sun Niagara, AMD Opteron; Intel Xeon,;...
- Quadcore systems by AMD, Intel

- IBM/Sony/Toshiba: Cell Broadband Engine
+ Power Processor (PPE) and 8 Synergistic PEs (SPEs)
4 peak 100 GF double precision (IBM Power XCEll 8i)

4

1000 cores on a chip possible with 30nm technology

¢ “Manycore” chips are already emerging ...

JPL Future Multicore Architectures:
From 10s to 100s of Processors on a Chip
T

¢ Tile64 (Tilera Corporation, 2007) oozt
- 64 identical cores, arranged in an 8X8 grid |
- iMesh on-chip network, 27 Th/sec bandwidth
- 170-300mW per core; 600 MHz - 1 GHz
- 192 GOPS (32 bit)—about 10 GOPS/Watt

¢ Kilocore 1025 (Rapport Inc. and IBM, 2008)
- Power PC and 1024 8-bit processing elements 8\ EE—
- 125 MHz per processing element |
- 32X32 “stripes” dedicated to different tasks

¢ 512-core SING chip (Alchip Technologies, 2008)
- for GRAPE-DR, a Japanese supercomputer project
¢ 80-core 2 TF research chip from Intel (2011)

- 2D on-chip mesh network for message passing fSlbciis Ret T U T Tl

- 1.01 TF (3.16 GHz); 62W power—16 GOPS/Watt e -

- Note: ASCI Red (1996): first machine to reach 1 TF S L pe—— :
» 4,510 Intel Pentium Pro nodes (200 MHz) GonfiguratismGashass:

» 500 KW for the machine + 500 KW for cooling of the room e DA SR MEINO e

Multicore Systems are Not Just Small
JPL SMPs or MPPs

¢ Intra-chip inter-core bandwidth is much larger than for a
typical parallel machine (SMP or MPP)

¢ Intra-chip inter-core latencies are much smaller
¢ Multicore systems can offer lightweight synchronization

¢ Lock-based synchronization is unacceptable: transactional
memory and full/empty bits (Cray MTA) are alternatives

€ Processing-In-Memory (PIM) technology offers additional
methods for exploitation of locality

JPL Top 500 Performance Development

10

1 Pflop/s

100 Tflop/s

10 Tflop/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

100 M flon/s

SUM

1117 TF/s

SR

1BV BlteGene/L

TN

LS

P J

IBM Rog

IBM ASCI White

Intel ASCI Red

#1 % 6_8 years

My j.a

1993
1994
1995
1996

1997
1998
1999
2000
2001
2003
2004
2005
2006

2007
2008

S

11.7PF/s

drunnef 02 pF;

9.0 TF/

®o 02009

L
LS

10% OPS

Cell Blade

Roadrunmnar Modea —,

1,026 TF=10%5 OPS

= The first machine reaching
va‘ Peta-scale performance
e S— ETYEE S 17 clusters, each with 192 nodes

Each node contains Opteron and 4 Cells
12,960 Cell chips (100 GF double precision)
Each Cell contains a PowerPC and 8 SPEs
6,948 dual-core Opterons

Total: 122,400 cores

\‘-‘q-_‘___]___.‘ﬁ——""_ Parallal ll:l}lll"l.lrlllu Bl omee sk I|r||‘|||.|,|..'=||'l:] DDA}

JPL Applications

¢ HPC has become the third pillar of science and

engineering, in addition to theory and

experiment

¢ Traditional application areas include:

- DNA Analysis
- Drug Design
- Medicine

- Aerospace

- Manufacturing

- Weather Forecasting and Climate Research

€ New architectures facilitate new applications:

- Graph Traversals
- Dynamic Programming

- Backtrack Branch & Bound

UC Berkeley’s
“Dwarfs”

7

JBL Contents

N o 0o A~ W M P

Introduction

Emerging Architectures and Applications
Towards High Productivity Programming
The High Productivity Language Chapel
Alternative Language Approaches

Issues Iin Programming Environments
Concluding Remarks

JPRL High-Level Sequential Languages

The designers of the very first high level programming language were
aware that their success depended on the target code performance:

John Backus (1957): “... It was our belief that if FORTRAN ... were to translate
any reasonable scientific source program into an object program only half
as fast as its hand-coded counterpart, then acceptance of our system
would be in serious danger ...”

High-level algorithmic languages became generally
accepted standards for sequential programming since
their advantages outweighed any performance drawbacks

For programming of HPC systems
no similar development took place

JPL Programming Paradigm for
MPPs and Clusters: MPI is State-of-the-Art &

The MPI Message-Passing Model

¢ widely adopted portable standard for full control of communication

¢ relatively simple execution model

¢ can achieve good performance on commodity clusters

Drawbacks of the MPI Model

¢ low-level paradigm: “the assembly language of parallel programming”

¢ lack of separation between algorithm and communication management
¢ complex, difficult-to-change communication structures
4 scalability to peta-scale questionable

Alternatives to MPI have been proposed

4 automatic vectorization and parallelization
¢ libraries for one-sided communication (SHMEM, ARMCI, GASNet)
¢ High Performance Fortran (HPF), PGAS languages, OpenMP, etc.

MPI| vs HPF:

JPL An Example for Locality Management (Jacobi Relaxation)

real, allocatable A(:, :), B(:, :)

do while (.not. converged)
do J=1,N
do I=1,N
B(1,3)=0.25(A(I-1,J)+A(1+1,J)+A(1,J-1)+A(1,J+1))
enddo

enddo
A(1:N,1:N)=B

enddo

Sequential Code

dependence pattern

Parallelization Based on Data Distribution

Let A and B be partitioned into blocks of columns mapped to
different processors. All processors can work concurrently on
their local data, but an exchange must take place at segment
boundaries after each iteration...

JRPL. Boundary Exchange in Overlap Regions

w®, R
\ \‘\\

halo regions *

I purely local operation in each iteration:

do while (.not. converged)
do J=1,M ! Number of local columns
do I1=1,N
B(1,J)=0.25(A(1-1,J)+A(I+1,J)+
A(1,J-1)+A(1,J+1))
enddo
enddo

After iteration:
Data Exchange

Processor P, reads:
 rightmost column of P, ,
e leftmost column of P,

Processor P, copies:
* its leftmost column to P, ,
e its rightmost columnto P,,,

JPL The Key Idea of

High Performance Fortran (HPF)

local view of data, local control,

Message Passing Approach i

HPF Approach

global view of data, global control,

explicit two-sided communication

compiler-generated communication

initialize MPI

. local computation
do while (.not. converged)

do J=1,M
do I=1,N
B(1,J) = 0.25 * (A(1-1,J)+A(1+1,J)+
A(1,3-1)+A(1,J+1))
end do
end do
A(1:N,1:N) = B(1:N,1:N)

global computation

do while (.not. converged)

do J=1,N
do I=1,N
B(1,J) =0.25 * (A(I-1,9)+A(1+1,J)+
A(1,J-1)+A(1,J+1))
end do
end do
A(1:N,1:N) = B(1:N,1:N)

_ communication
if (MOD(myrank,2) .eq. 1) then

call MPI_SEND(B(1,1),N,...,myrank-1,..)
call MPI_RCV(A(1,0),N,...,myrank-1,..)

data distribution

processors P(NUMBER_OF PROCESSORS)
distribute(*,BLOCK) onto P :: A, B

if (myrank .It. s-1) then
call MPI_SEND(B(1,M),N,...,myrank+1,..)

else ...

call MPI_RCV(A(1,M+1),N,..., myrank+1,..) h communication
endif

|

compiler-generated

K. Kennedy, C. Koelbel, and H. Zima: The Rise and Fall of High Performance Fortran: An Historical Object Lesson

Proc. History of Programming Languages Il (HOPL lll), San Diego, June 2007

JPL Example: Sweep Over Unstructured Mesh in HPF *M’*A

THPF$ PROCESSORS P(NUMBER_OF PROCESSORS())
TYPE NODE I type of a node iIn the unstructured grid

REAL::V1, V2 I flow variables
END TYPE NODE

TYPE(NODE), ALLOCATABLE::GRID(:)

REAL, ALLOCATABLE::EDGE(:,2)

INTEGER, ALLOCATABLE::MAP(:) I mapping array
THPF$ DYNAMIC, DISTRIBUTE(BLOCK)::GRID
THPF$ DYNAMIC, DISTRIBUTE(BLOCK,*) : :EDGE
THPF$ DISTRIBUTE(BLOCK) : :MAP

I Read parameters; allocate GRID, MAP; initialize GRID, M
CALL GRID_PARTITIONER(GRID,MAP)

THPF$ REDISTRIBUTE GRID(INDIRECT(MAP))
ALLOCATE(EDGE(M, 2))

I Initialize and realign EDGE with GRID

I Sweep over edges of the grid:

IHPF$ INDEPENDENT,ON HOME(EDGE(J,1)),NEW(N1,N2,DELTAV),REDUCTION(V2)
DO J=1,M
N1=EDGE(J, 1), N2=EDGE(J,2)

DELTAV=F(V1(N1),V1(N2))

V2(N1)=V2(N1)-DELTAV

V2(N2)=V2(N2)+DELTAV
ENDDO

‘subroutine. conm3Cu,nk.n2an3; ki),
use. cafe intwin

iplicit: none.

clude. *cafnpb, b
clude. "globals h

integer; k. n2. n3 kk
doublle. precision, u(n.n2:n3),
integer;

i -not. dead(ki), then
do, axis =1, 3
i npriogs. -ne.. 1), then
call; syne.
call; give3(axis, +L. U, Nl N2, 13, kk),
call; give3(axis, -L. U, Nk, N2 13 Kk,
call; sync. alhQ,
call take3(ax
call take3(ax
alse
cal
endif;
enddo.
else.
do, axis. = 1, 3
call; sync.allQ,
call; syne-alQ,
enddo.
calily zero3(u,nL.n2,n3)
endif;
return,

L. u, L, 02, n3)
U, Nk, 2. 13,

4 conmip(axis, U, nk. n2. 03 kK.,

end

subroutine. give3(a o Uy Nk 02 03 KO,

use. caf. inty

ics.

iplicit: none.

clude. *cafnpb, b
include. “globals: h-

teger; a
double. prec

., dif, Nk, 12, 03, K, iern
00, U Nk, N2, 13,

integer; i3, 2. ik, byfiflen,buff id

bufif len, = 0

i axis. .eq, 1)then.
£ dir -eq; -1 Ythen

bufflen, = bufflen, + 1
bUFEQUTften, byffiid))) = u(2,
enddo.
enddo.

buFFC:buRf en, buff igr 1) fnbr(axis, |

> DUFFCL:bYTE len, buff |

Sl =

else. ifi(dix; .eq, +1), then,

BUFFC:bUTE len, buff igt 1) [nbr(adis, dif. K =
> byFCbyYTe len, buff, ig),

endif;
endif;

i axis. .eq, 2)then
£ dir -eq, -1 Ythen

Fortran+MPI Communicat
for 3D 27-point Stencil

buff_len = buff_len + 1
bUFF(UFT_len, bUFf_id) = u(i1, 2,i3)
enddo
enddo

buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-1,i3)
enddo
enddo

endif
endif

if(axis .eq. 3)then
IfC dir .eq. -1)then

buff_len = buff_len + 1
bUFF(UFT_len, bUFf_id) = u(i1,i2,2)
enddo
enddo

buFf(L:buff_len,buff_id+1) [nbr(axis,dir,k)]
bUFF(L:bUFE_len,buff_id)

else if(dir .eq. +1) then

do i2=1,n2
do
buff_len = buff_len + 1
buff(buff_llen, buff_id) = u(i1,i2,n3-1)
enddo
enddo

bUFF(LbUFE_len, buff_i
bUFF(L:bUFE_len, buff_id)

endif
endif

return

end

subroutine take(axis, dir, u, ni, n2, n3)
use caf_intrinsics

implicit none

include “cafnpb.h*
include “globals.h*

integer axis, dir, ni, n2, n3
double precision u(n1, n2, n3)

integer buff_id, indx

integer i3, i2, i1

buff_id = 3 +
indx = 0

ifC axis .eq. 1)then
#f(dir .eq. -1)then

indx = indx + 1

uent,
enddo

) = buff(indx, buff_id)

enddo

else

if(dir .eq. +1) then

enddo
endif
endif
if(axis .eq. 2)then
F(dir eq. -1)then
do i3=2,n3-1
do 1
indx = indx + 1
u(i1,n2,§3) = buFf(indx, buff_id)
enddo
eenddo
else ifC dir .eq. +1) then
do i3=2,n3-1
do nl
indx = indx + 1
u(i1,1,i3) = buFFCindx, buff_id)
enddo
eenddo
endif
endif
if(axis .eq. 3 then
iFC dir .eq. -1)then
do
enddo
else ifC dir .eq. +1) then
do
eenddo
endif
endif
return
end
subroutine commlp(axis, u, nl, n2, n3, kk)
use caf_intrinsics
inpt
include *cafnpb.h®
include *globals.h®
integer axis, dir, nl, n2, n3
double precision u(ni, n2, n3)
integer i3, i2, i1, buFf_len,buff.

integer

buff_id
buff_ten

i, Kk, indx

=3+ dir
nm2

bUFF(i ,buff_id) = 0.000
enddo

bUFF(i buff_id)
enddo.

bufF(buff_len, buff_|
enddo

enddo
endif

bufF(buff_len,
enddo
enddo
endif

)= u(i1,n2-1,i3)

.eq. 3)then

buff_len = buff_len + 1
bUFF(DUTT_len, buff_

) = u(i1,i2,n3-1)

enddo
enddo
endif

buff_id = 2 + dir
buff_len = 0

i axis .eq. 1)then

buff_len = buff_len + 1
bUFF(DUTT_len,buff_id) = u(2,
enddo
enddo
endif

buff_len = buff_len + 1
bUFF(OUTT_len, buff_
enddo
enddo
endif

.eq. 3)then

bUFF(UTT_len, buff_
enddo
enddo
endif

) = u iLi2,2)

buff(i,4) = buff(i.3)
buff(i.2) = buff(i.1)
enddo

dir

.eq. 1)then
n3-1

i2=2,n2-1

indx = indx + 1

= buff(indx, buff_id)

b+ 1
U(i1,1,i3) = buFf(indx, buff_id)
enddo
enddo
endif
if(axis .eq. 3)then

ax + 1
1) = buff(indx, buff_id)

enddo
endif

return
end

JPL Chapel 3D NAS MG Stencil rprj3

function rprj3(S,R) {
const Stencil: domain(3) = [-1..1, -1..1, -1..1], // 27-points
w: [0..3]real = (/0.5, 0.25, 0.125, 0.0625/), // weights
w3d: [(i,]J.k) in Stencil] = w((i!=0) + (!'=0) + (k!=0));

forall ijk In S.domain do
S(1jk) = sum reduce [off in Stencil] (w3d(off) * R(ijk + R.stride*off));

JPL Productivity Challenges for Peta-Scale Systems

¢ Large-scale hierarchical architectural parallelism
- tens of thousands to hundreds of thousands of processors
- component faillures may occur frequently

¢ Extreme non-uniformity in data access

¢ Applications: large, complex, and long-lived
- multi-disciplinary, multi-language, multi-paradigm
- dynamic, irregular, and adaptive
- survive many hardware generations =2 portability is important

¢ How to exploit the parallelism and locality provided by
the architecture?

- automatic parallelization and locality management are not
powerful enough to provide a general efficient solution

- explicit support for control of parallelism and locality must be
provided by the programming model and the language

JPL Parallel Programming Models

¢ Fragmented Models

- processor-centric view: code written from the viewpoint of single
threads

- local view of data segments

¢ Single Program Multiple Data (SPMD) Model

- special class of fragmented model
- single program executed in multiple instances

¢ Global-view Models

- global view of data and computation
» burden of partitioning shifts to compiler/runtime
» user may guide this process via language constructs

¢ Locality-aware Models
- features for mapping data and/or control to the architecture

JRPL. Languages for High Performance Computing

¢ HPF Language Family
- predecessors: CM-Fortran, Fortran D, Vienna Fortran
- High Performance Fortran (HPF): HPF-1 (1993); HPF-2(1997)
- successors: HPF+, HPF/JA

¢ OpenMP

¢ Partitioned Global Address Space (PGAS) Languages
- Co-Array Fortran
- UPC
- Titanium
¢ High-Productivity Languages developed in the HPCS Program
- Chapel
- X10
- Fortress

¢ Domain-Specific Languages and Abstractions

JBL Contents

N o 0o A~ W M P

Introduction

Emerging Architectures and Applications
Towards High Productivity Programming
The High Productivity Language Chapel
Alternative Language Approaches

Issues Iin Programming Environments
Concluding Remarks

JPL HPCS Languages

global view of data, global control

¢ High-Productivity Computing Systems (HPCS) is a DARPA-sponsored
program for the development of peta-scale architectures (2002-2010)

¢ HPCS Languages
- Chapel (Cascade Project, led by Cray Inc.)
- X10 (PERCS Project, led by IBM)
- Fortress (HERO Project [until 2006], led by Sun Microsystems)

¢ These are new, memory-managed, object-oriented languages

- global view of data and computation =2 generally no distinction
between local and remote data access in the source code

- support for explicit data and task parallelism
- explicit locality management
- Chapel is unique in that it provides user-defined data distributions

JPL Chapel Language Concepts

http://chapel.cs.washington.edu

¢ Explicit high-level control of parallelism

- data parallelism
» domains, arrays, indices: support distributed data aggregates
» forall loops and iterators: express data parallel computations

- task parallelism
» cobegin statements: specify task parallel computations
» synchronization variables, atomic sections

¢ Explicit high-level control of locality
- “locales”: abstract units of locality
- data distributions: map data domains to sets of locales
- on clauses: map execution components to sets of locales

¢ Close relationship to mainstream languages
- object-oriented
- type inference and generic programming
- modules for Programming-in-the-Large

Note: Some of the features discussed in the following have the status of research
proposals and are currently not part of the official Chapel language specification

JIPL. Example: Jacobi Relaxation in Chapel

const L:[1..p,1..q9q] locale = reshape(Locales);

const n= ..., epsilon= ...;

const DD:domain(2)=[0..n+1,0..n+1] distributed(block,block)on L;
D: subdomain(DD) = [1..n, 1..n];

var delta: real;

var A, Temp: [DD] real; /*array declarations over domain DD */

A(0,1..n) = 1.0;

do {
forall (1,jJ) in D { /* parallel iteration over domain D */
Temp(i,j) = (AG-1,)+A+1,J)+A(,J-1)+A(1,j+1))/4.0;
delta = max reduce abs(A(D) — Temp(D));
A(D) = Temp(D);
} while (delta > epsilon);

writeln(A);

JIPL. Example: Jacobi Relaxation in Chapel

const L:[1..p,1..q9q] locale = reshape(Locales);

const n= ..., epsilon=
const DD:domain(2¥.distributed(block, block on
D: subdomain(D

var delta: real;
var A, Temp: [DD] real;

Locale Grid L

AC0,1..n) = 1.0;

do {
forall (n,jJ) In D {
Temp(i,j) = (AG-1,3)+A+1,J)+A(T,J-1)+A(1,j+1))/4.0;
delta = max reduce abs(A(D) — Temp(D));
A(D) = Temp(D);

} while (delta > epsilon); Key Features
sglobal view of data/control
writeln(A); sexplicit parallelism (forall)

*high-level locality control

*NO explicit communication

*NO local/remote distinction
in source code

4L Task Parallelism in Chapel

¢ Task Creation
cobeqgin{ S,,...S;} executes the S, in parallel (i = 1,...n)

¢ Task Localization
on L(i,)) do f(A(i,))) executes f(A(i,j) on locale L(i,))

€ Task Synchronization

- atomic sections
- sync variables

- single-assignment variables

JRL Aspects of Locality

Locale: an abstract
unit of locality

distribute
work

distribute
data

align data with work
(affinity)

align data

Chapel’s Framework for
JPL User-Defined Distributions

¢ Provides functionality for:
- distributing index sets across locales
- arranging data within a locale

- defining specialized distribution libraries

€ This capability is in its effect similar to function specification

- unstructured meshes

- multi-block problems

- multi-grid problems

- distributed sparse matrices

[~ Tuesday 6 Cctober 7988 T20TC ECMWF Forecastt+ 72 V1. Friday 9 October 1998 1207C

A A

iy, %“NH@‘
Ay A

85

ANV,
SR

L Locality Control in Chapel: Basic Concepts N‘m

¢ Domain: first class entity
- components: index set, distribution, associated arrays, iterators

¢ Array—Mapping from a Domain to a Set of Variables

¢ Framework for User-Defined Distributions: three levels
1. naive use of a predefined library distribution (block, cyclic, indirect,...)
2. specification of a distribution by
global mapping: index set = locales

» interface for the definition of mapping, distribution segments, iterators
» system-provided default functionality can be overridden by user

3. specification of a distribution by global mapping and
layout mapping: index set -2 locale data space

¢ High-Level Control of Communication
- user-defined specification of halos; communication assertions

User-Defined Distributions:
JPL Global Mapping

[* declaration of distribution classes MyC and MyB: */
class MyC: Distribution {

const z:int; /* block size */

const ntl:int; /* number of target locales*/

function map(i:index(source)):locale { /* global mapping for MyC */
return Locales(mod(ceil(1/z-1)+1,ntl));

+

class MyB: Distribution {

var bl:int = ___; /* block length */

function map(i: index(source)):locale { /* global mapping for MyB */
return Locales(ceil(i1/bl));

by

}

* use of distribution classes MyC and MyB in declarations: */

const D1C: domain(l) distributed(MyC(z=100))=1..n1;

const D1B: domain(l) distributed(MyB) on Locales(l..num_locales/10)=1..n1;
var Al: [D1C] real;

var A2: [D1B] real;

2 3 5 6 7
R R R R T
of| 7 : S- 12
..°' ..0'. .14
o..) 15
: 4 ...' , 16
.18

Diagonal A/d = { A(i,j) | d=i+ }
bw = 3 (bandwidth)

p=4 (number of locales)

Distribution—qglobal map:

Blocks of bw diagonals are
cyclically mapped to locales

Layout:

Each diagonal is represented
as a one-dimensional dense
array. Arrays in alocale are
referenced by a pointer array

— a —

— — (92
nd 1D_1623 3'4974
QO N~ O| < mo
<))
7p) mn_12233455
|-
=3 I
o C_2145
p)
N—r’ 0'3973
O ©Bd Ao
-
@)
@
mc
© Q
X =
W =
= _
= o O O
Ol co oooo &
S <
O ON__OOOOB o @ ©
)
N O O o © o o
S| e oo R
1
~ O
X S m
=l coocooco J o ¥
LS.
©
= cocooo ;e
O OO0 oo oo
L MmO O oo oo
LO
] 2
oo+ oo oo

JPL User-Defined Halos

¢ User-Defined Specification of halo (ghost cells)

¢ Compiler/Runtime System
- allocates local images of remote data
- defines mapping between remote objects and their images

¢ Halo Management
- update
- flush

distribution
segment

JBL Contents

N o 0o A~ W M P

Introduction

Emerging Architectures and Applications
Towards High Productivity Programming
The High Productivity Language Chapel
Alternative Language Approaches

Issues in Programming Environments
Concluding Remarks

JPL PGAS Language Overview

Support for_global view of data, but local control

¢ Partitioned Global Address Space (PGAS) languages
are based on the SPMD model

¢ Providing a shared-memory, global view, of data,
combined with support for locality

- global address space is logically partitioned, with each portion
mapped to a processor

- single-sided shared-memory communication (instead of MPI-style
message passing)

- in general, local and remote references distinguished in the source
code

- implemented via one-sided communication libraries (e.g., GASNet)

¢ Local control of execution via processor-centric view

¢ Main representatives: Co-Array Fortran (CAF), Unified
Parallel C (UPC), Titanium

JPL Domain-Specific Languages

¢ General-purpose languages are limited in their ability to
accommodate the abstractions of a scientific domain

4 Domain-specific languages provide abstractions tailored
to a specific domain

- narrowing of the semantic gap between the programming
language and the application domain

- separation of domain expertise from parallelization and resource
management

¢ Domain-specific knowledge can be used to improve
program analysis and support V&V and fault tolerance.

¢ Telescoping supports the automatic generation of
domain-specific languages by generating specialized,
optimized versions of libraries

JBL Contents

N o 0o A~ W M P

Introduction

Emerging Architectures and Applications
Towards High Productivity Programming
The High Productivity Language Chapel
Alternative Language Approaches

Issues in Programming Environments
Concluding Remarks

JPL Issues in Programming Environments

¢ Legacy Code Migration

¢ (Semi) Automatic Tuning

- closed loop adaptive control: measurement, decision-making,
actuation

- information exposure: users, compilers, runtime systems

- learning from experience: databases, data mining, reasoning
systems

¢ Fault Tolerance

- massive parallelism poses new reliability problems
- fault anticipation, detection, localization, analysis, and recovery

JPL Legacy Code Migration

¢ Rewriting Legacy Codes
- preservation of intellectual content
- performance portability: exploit new hardware and new algorithms
- code size may preclude complete rewrite: incremental porting

¢ Language, compiler, tool, and runtime support
- (semi) automatic tools for migrating code

- translation of performance-critical sections requires highly-
sophisticated software for automatic adaptation

» reverse engineering of the original program

» static analysis, using domain and/or architecture-specific knowledge
» pattern matching and concept comprehension

» optimizing code generation guided by the target architecture

JPL Offline Performance Tuning

Source restructuring
program commands

actuators

Transformation
system

Parallelizing
compiler

l monitoring 1
sensors
nstrumentea
aet)
program

end of HPCS system
tuning cycle Application Execution

Expert System
Advisor

JPL Autonomy and Fault Tolerance for
High-Performance Space-Borne Computing

Neptune Triton
Explorer

I T S e T
e g R

-

ey, -
e T~ N —
= N -

=
S_ -

: o

e]
=

Explorer |
Titan Explorer Euroizli)srgfobr;)mgy

Future missions need Autonomy and High-Capability On-Board Computing:
this can be accomplished by extending traditional spacecraft architectures

JPL High-Capability On-Board System:

An Example

EARTH

Fault-Tolerant High-Capability Computational Subsystem

High-Performance

System .
Controller Computing System (HPCS)

(SYSC)

Intelligent

Multi-core Processor
Compute Interface In

: fabric Memory
Engine o

Cluster S

- Instruments

Fault tolerance for the HPCS component—protecting it
against transient faults—is a specific concern for this model

JPL A Framework for Introspection

Introspection...

¢ provides dynamic monitoring, analysis, and feedback,
enabling system to become self-aware and context-aware:

- monitoring execution behavior
- reasoning about its internal state
- changing the system or system state when necessary

¢ exploits adaptively the available threads

¢ can be applied to different scenarios, including:
- fault tolerance
- performance tuning
- power management
- behavior analysis
- intrusion detection

L An Introspection Module (IM)

Introspection Sy

Sensors E .
Inference Engine
(SHINE)

Base

System

Application S v

O :

I Recovery I Knowledge
actuators

Application
Knowledge

IPrognosticsI

For hierarchically structured architectures,
a corresponding hierarchy of introspection
modules will be constructed

JPL Conclusion

¢ HPCS languages constitute an important step towards high-productivity
programming for massively parallel peta-scale architectures

¢ Acceptance of a new language depends on many criteria, including:
- functionality and target code performance
- mature, industrial-strength compiler and runtime system technology
- easy integration/migration of legacy codes
- familiarity of users with conventional features
- flexibility to deal with new hardware developments

€ Many research challenges remain
- high-level language features for multi-threading

- architecture- and application-adaptive compilation and runtime systems that
employ intelligent search strategies (ATLAS-like)

- intelligent tools and middleware that provide efficient support for program
development, performance tuning, fault tolerance, and power management

- performance-porting of legacy applications

Example o
JPL BRD Distribution with CRS Layout

class BRD: Distribution {

function map(i:index(source)):locale{.}; /7* global mapping for dense domain */
function GetDistributionSegment(loc:locale):domain(1){.}; 7/* “box” for loc */

}

class CRS: LocalSegment {
const loc: locale = this.getLocale();
/* declaration of dense and sparse distribution segment for locale loc: */

const locD: domain(2);
const locDD: sparse domain(locD) = GetDistributionSegment(loc);

const LocalDomain: domain(1)=1..nnz; /* local data domain */
/* persistent data structures in the local segment: */
var cx: [LocalDomain] index(locD(2)); /* column index vector */

var ro: [11..ul+1l] index(xLocalDomain); /* row vector */

function define_column_vector(): {[z in LocalDomain] cx(z)=nz2x(z)(2)}
function define_row_vector(): {.}

/* mapping global index to index in local data domain: */
function layout(i: i1ndex(D)): index(LocalDomain) return(x2nz(i))
constructor LocalSegment(){define_column_vector(); define_row_vector(); }

}

JRL Implementation Target Architecture:
Cluster of Cell Broadband Engines

4 CBE-1 _ _
Cell Broadband Engine CBE-i
[]
. PowerPC
g Processor
. Element
Cluster |
Inter-

Connection] C | CBE-i Element Interconnect Bus (EIB)

Network

N Synergistic
Processor | SPE-1
Elements

| CBE-n

Fault tolerance must be applied across all levels of the system hierarchy:

SPE = PPE - CBE - Cluster

JRL Case Study: Introspection Sensors
for Performance Tuning

Introspection sensors yield information about the
execution of the application:

¢ Hardware Monitors

= accumulators: counting standard events (cache misses, loads, FP ops,..)
= timers: analysis of latencies and stalls
- programmable watch events for special conditions

¢ Low-level Software Monitoring (at message-passing level)

= waiting times for blocking send and receive
= communication transfer times
= barrier synchronization times

¢ High-Level Software Monitoring (at the level of a high-level
language)
= timing for redistribution of a globally distributed collection
timing for function invocation, loop, or program region

timing for computing a communication schedule (“inspector”)
evaluation of assertions and invariants

JPL Case Study: Introspection Actuators
for Performance Tunin

Introspection actuators provide mechanisms, data, and
control paths for implementing feedback to the application,
depending on results of analysis and prediction:

¢ Instrumentation and Measurement Retargeting
¢ Resource Reallocation

¢ Computational Steering

- changing the implementation of an application section
changing a function implementation by choosing a more efficient algorithm
changing the implementation of a loop
changing the distribution of key data structures, with the goal of load balancing

¢ Program Restructuring and Recompilation (offline)

SRl Berkeley’'s 7 +6 Dwarfs

1. Dense Linear Algebra (BLAS, ScaLAPACK,MATLAB)

2. Sparse Linear Algebra (SpMV, SuperLU)

3. Spectral Methods (FFT)

4. N-Body Methods (Barnes-Hut, Fast Multipole)

5. Structured Grids (Cactus, Magneto-Hydrodynamics)

6. Unstructured Grids (ABAQUS,FIDAP)

7. Monte Carlo

8. Combination Logic (Encryption; Cyclic Redundancy Codes—CRC)
9. Graph Traversal (Quicksort)

10. Dynamic Programming

11. Backtrack and Branch and Bound

12. Construction of graphical models (Bayesian networks, Hidden Markov Models)

13. Finite State Machines

JIPL. The Traditional Approach will not Scale

4 Traditional approach based on rad-hard processors and fixed
redundancy (e.g.,Triple Modular Redundancy—TMR)

- Current Generation (Phoenix and Mars Science Lab —'09 Launch)

Single BAE Rad 750 Processor
256 MB of DRAM and 2 GB Flash Memory (MSL)
200 MIPS peak, 14 Watts available power (14 MIPS/W)

- ST8 Honeywell Dependable Multiprocessor
COTS system with Rad 750 controller (100 MIPS) and IBM PowerPC 750FX (1300 MIPS)
120 MIPS/Watt Performance
Fault tolerant architecture

4 Rad-hard processors today lag commercial architectures by a factor
of about 100 (and growing)

¢ By 2015: asingle rad-hard processor may deliver about 1 GF—
orders of magnitude below requirements

¢ COTS-based multicore systems will be able to provide the required
capability, but there are serious issues to be addressed...

NASA

JPL Introspection versus Traditional V&V

¢ Introspection

- focuses on execution time monitoring, analysis, recovery
- actual work considers transient and hard faults, not design errors

& Verification & Validation:

- focuses on design errors
- IS applied before actual program execution

¢ Verification has the goal to prove that a program
conforms to its specification for all legal inputs

¢ Test proves or disproves correctness of the program for
specific (range of) inputs
¢ Both verification and test are not complete:

- problems may be undecidable or intractable
- tests can prove existence of faults, not their total absence

JPL Key Applications for Future Architectures:
Berkeley’s “Dwarfs”

1. Dense Linear Algebra (BLAS, ScaLAPACK,MATLAB)

2. Sparse Linear Algebra (SpMV, SuperLU)

3. Spectral Methods (FFT)

4. N-Body Methods (Barnes-Hut, Fast Multipole)

5. Structured Grids (Cactus, Magneto-Hydrodynamics)

6. Unstructured Grids (ABAQUS,FIDAP)

7. Monte Carlo

8. Combination Logic (Encryption; Cyclic Redundancy Codes—CRC)
9. Graph Traversal (Quicksort)

10. Dynamic Programming

11. Backtrack and Branch and Bound

12. Construction of graphical models (Bayesian networks, Hidden Markov Models)

13. Finite State Machines

JPL Early Alternatives to MP!

¢ Automatic Vectorization and Parallelization

- automatic vectorization (for inner loops) and parallelization (for SMPs)
were successful in limited contexts

- in general, automatic parallelization is essentially intractable

¢ Data parallel languages for MPPs and clusters

- pioneered by compiler projects at Caltech (Cosmic Cube) and U of Bonn
(SUPERB Fortran parallelizer)

- key features of data parallel languages
» global name space
» single thread of control
» loosely synchronous parallel computation
» automatic generation of communication

- key language developments

» IVTRAN (1973) — for the SIMD ILLIAV IV - first language to allow control of data
layout

» MPP languages: Kali, Fortran D, Vienna Fortran, Connection Machine Fortran
» High Performance Fortran (HPF) result of a standardization effort

JPL Sensors and Actuators

¢ Sensors and actuators link the introspection framework to
the application and the environment

€ Sensors: provide input to the introspection system

Examples for sensor-provided inputs:
- State of a variable, data structure, synchronization object
- value of an assertion
- State of a temperature sensor or hardware counter

¢ Actuators: provide feedback from the introspection system

Examples for actuator-triggered actions:

- modification of program components (methods and data)

- modification of sensor/actuator sets (including activation and deactivation)
- local recovery

- signaling fault to next higher level in a hierarchical system

- requesting actions from lower levels in a hierarchical system

Application-Aware Fault Detection
JPL Assertions: Examples

¢ Assertions based on general program structures
- values and value ranges for variables, subscript expressions, pointers
- sequential and parallel control flow patterns
- locality and communication assertions
- independence assertions for data-parallel loops
- real-time constraints
- safety and liveness properties

¢ Domain-specific assertions: exploiting knowledge about:
- target system: hardware and software

- application domain
» libraries: pre- and post conditions, argument constraints
» data structure invariants
» control constraints

» data representation and distribution knowledge (e.g., CRS for distributed
sparse matrices)

» communication patterns and schedules for parallel constructs

JRL Space Flight Avionics and Microprocessors
History and Outlook

Rad-hard components are always
at least 2 generations behind
commercial State-of-the-Art Multi-Core Regime
100J000,000
10,000,000
1/000,000
L
({0 Hyperion
g
;%00000
]
[c
m @
-§10000
k3 E(2 Pentium 4/2530 QS
©
E e (€ — 2060 @ ppcf470/1250
g - , entium PPC7455[1000
S i . (\g\e Pentium 11/450 . ®ppC7441/700 RADTEOM e e MY o emn wacnna
¢ S\ 300% 00 PPC7400/450 2
O’(5 Pentium Pro/150 00,0°° B33Ret M
C o %Pentium 11233 Deep Impact “oooat
- Pentium/6 EIR o PPC603¢/133 (RadLite750)
68040/40 ° PPC601/110
° PPCEOL/80\ars pathfinder M~ Stardust
68030/50 (RAD6000) (RAD6000)
1088020033 o= gnagpio5 Deep Space 1
(RADB000) SIRTF
80386/33 Clementine HKP i (RADG000)
(1750) Cassini
(1750A)
1 [)
Mars Global Surveyor
Galileo CDS
(1802) Mars Observer EDF ° (1759A)
01 (17504) Mars Pathfinder Rover
®~(80C85)
8 87 8 89 90 91 92 93 94 95 9 97 98 99 00 01 02 03, 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Launch Year o _
@ Intel @ Motorola 680X0 ® PowerPC @ Missions Multi-Core FPGA

Source: Contributions from Dan Katz (LSU), Larry Bergman (JPL), and others

JBL Transient Faults

¢ SEUs and MBUs are radiation-induced transient hardware
errors, which may corrupt software in multiple ways:
- instruction codes and addresses
- user data structures
- synchronization objects
- protected OS data structures
= synchronization and communication

¢ Potential effects include:
- wrong or illegal instruction codes and addresses
- Wrong user data in registers, cache, or DRAM
- buffer overflows
- control flow errors
- unwarranted exceptions
- hangs and crashes
= synchronization and communication faults

JPL Basic Parallel Architecture Paradigms

I Control Unit I
| cru| «++ |JcPu
Interconnection Network
‘ Interconnection Network‘

Interconnectlon Network

Single-Instruction-Multiple-Data (SIMD) Symmetric Multiprocessors (SMP) Distributed-Memory Multiprocessors
Hardware implementation of a data parallel Uniform Memory Access (UMA) (MPPs)
model of computation Non-Uniform Memory Access (NUMA)
ILLIAC IV, DAP, BSP, CM-1, CM-2, MasPar MP-1... Alliant FX, Digital VAX 8800, Sequent Balance,... Cosmic Cube, Suprenum, Transputers,...
Vector Computers Clusters

Cray 1, Cyber 205, ...

In modern multicore-based architectures, such building blocks
may be hierarchically combined in many different configurations

JIPL. Distributions: Outline of a Formal Framework

¢ Let | denote the index set of a domain, and L the index domain for a set locales.
A data distribution

o:l=2>L
IS a total function that specifies for each element in | an associated locale

¢ Letl,l, denote index domains. An alignment from |, to |, is a total function
aly, =21,
that associates an index in |, with every index of |,. If I, has a distribution, 5,,
then a distribution, §,, for |, is obtained as §,=6,0 a

¢ Affinity between distributed data and threads can be formalized in a similar way

)
)
 —
-
s
&)
)
=
L
O
-
<
o
o
LO)
Q.
@)
T

v
£
o
g
>
o
L
i
£
’y
L
=
;
=
=
J
=
<

JPL

®
=]
=]
o
M
=)
=)
=

S00

400

MPP
I Cluster

B sMP

B Constellations

B Single Processor

B Others

300
200

SWIISAS

8002/90
£002/90
9002/90
S00Z/90
#002/90
£002/90
200z/90
1002/90
000Z/90
6661/90
8661/90
L66T/90
9667/90
5661/90
667/90

100

nmmmﬁ\mm

TOP500 Releases

JBL Domains

¢ Concept influenced by HPF templates, ZPL regions
¢ Domains are first-class objects

4 Domain components
- index set
- distribution
- set of arrays

¢ Index sets are general sets of “names”
- Cartesian products of integer intervals (as in Fortran95 etc.)
- sparse subsets of Cartesian products
- sets of object instances, e.g., for graph-based data structures

¢ Iterators based on domains

JPLExampIe: Possible Extensions for the CELL
Matrix-Vector Multiply

var A: [1..m,1..n] real; -
var x: [1..n] real ; (Orlglnal)
var y: [1..m] real ; Chape|
y = sum reduce(dim=2) forall (i,j) in [1..m,1..n] AG.D*x(G): Version
param n_spe = 8; /* number of synergistic processors (SPEs) */
const SPE:[1..n_spe] locale; /* declaration of SPE array */
var A: [1..m,1..n] real distributed(block,*) on SPE; ChapEI_Wlth
var x: [1..n] real replicated on SPE; (implicit)
var y: [1..m] real distributed(block) on SPE; heterogeneous
y = sum reduce(dim=2) forall (i,j) in [1..m,1..n] AGi.i)*x(); semantics
PPE Memory SPE, local memory (k=4)
AL Vil [
A2 y2 X2
A3 y3
A A5 y5
A6 y6
A7 y7
i K1

A,: k-th block of rows

Y,. k-th block of elements
X, . k-th element

Example
JPL Matrix-Vector Multiply on the CELL: V2

param n_spe = 8; /* number of synergistic processors (SPEs) */
const SPE:[1..n_spe] locale; /* declaration of SPE locale array */
const PPE: locale /* declaration of PPE locale */

var A: [1..m,1..n] real on PPE linked(AA) distributed(block,*) on SPE;

var x: [1..n] real on PPE linked(xx) replicated on SPE;
var y: [1..m] real on PPE linked(yy) distributed(block) on SPE;
AA=A; XX=X; /* copy and distribute A, x to SPEs */
yy=sum reduce(dim=2) forall (1,jJ) In [1..m,1..n] on locale(Xx(J)) AA(1,J)*xXx();
Y=Yy, /* copy yy back to PPE */
Chapel/HETMC with
explicit transfers
SPE, local memory (k=4)
PPE Memory
Al T
A2 y2
A3 y3
A4 y4
A A5 y5 y
A6 y6
A7 y7
A8 [v8]

JPL User-Defined Distributions: Global Mapping(2)

[* declaration of distribution class MyC1.: */

class MyCl1l: Distribution { /* cyclic(l) */
const ntl:int; /* number of target locales */
function map(i:index(source)):locale { /* global mapping for MyCl */
return Locales(mod(i-1,ntl)+1);
+

[* set of local iterators : */

iterator DistSeglterator(loc: index(target)): index(source) {
const N: int = getSource() .extent;

const k: int locale _index(loc);

for 1 Iin k._.N by ntl { yield(i); }

}

/* distribution segment : */ _ i i
function GetDistributionSegment(loc: i1ndex(target)): Domain {

const N: i1nt = getSource() .extent;
const k: int = locale_index(loc);
return (k..N by ntl);

}

}

[* use of distribution class MyCL1 in declarations: */
const D1C1: domain(l) distributed(MyC1()) on Locales(l..4)=1..16;

var Al: [D1C1] real;

JPL An Approach to Application-Oriented
Introspection-Based Fault Tolerance in the HPCS

¢ Approach based on a (mission-dependent) fault model

- classifies faults (fault types, severity)
- specifies fault probabilities, depending on environment
- prescribes recovery actions

¢ Addressing fault detection, analysis, isolation, recovery

¢ Exploiting knowledge from different sources

- automatic generation of assertions based on:
static analysis and profiling
properties of target system hardware and software
application domain (libraries, data structures, data distributions)

- user-provided assertions and invariants

¢ Leveraging existing technology
- fixed-redundancy for small critical areas in a program
- Algorithm-Based Fault Tolerance (ABFT): standard matrix methods
- integration of high-level generator systems such as CMU’s “SPIRAL”

L X10 and Fortress: Some Key Properties

¢ X10 --- the IBM HPCS Language
- object-oriented; serial sublanguage based on Java

- an array sublanguage supports the distribution of multi-
dimensional arrays via standard methods

- sequential and parallel iterators, either local or global
- asynchronous activities

¢ Fortress --- the SUN HPCS Language
- object-oriented, with some relationship to Java

- supports Unicode and conventional mathematical notation:
eJd., y = asin2x +cos 2xlog log x

- strong security model
- support for language “growth” via inclusion of libraries
- by default, arrays are distributed and loops are parallel

S0 Co-Array Fortran

¢ Extension of Fortran to allow SPMD-style programming

¢ Introduces a new type of array dimension (co-array) to
refer to the cooperating instances (“images”) of an
SPMD program, making processor boundaries explicit:

integer :: a(n.m) [*]

this introduces a shared co-array a with n*m integers
local to each processor image

€ Non-local variables can be directly referenced based on
a corresponding syntax extension:

a(1,:) [p]
references the first row of co-array a in processor p

€ a barrier provides synchronization between images

JPL UPC

¢ Support for a global address space model for SPMD
parallel programs, in which threads share part of their
address space

¢ The shared space is logically partitioned into fragments,
each of which Is associated with a thread

¢ Shared arrays are distributed in block-cyclic fashion
among threads

¢ The upc_forall construct supports work sharing for a
parallel loop

¢ Additional features include special constructs for
pointers (private/shared), non-blocking barriers, and
collective operations

JPL An Approach to Application-Oriented
Introspection-Based Fault Tolerance in the HPCS

¢ Approach based on a (mission-dependent) fault model

- classifies faults (fault types, severity)
- specifies fault probabilities, depending on environment
- prescribes recovery actions

¢ Addressing fault detection, analysis, isolation, recovery

¢ Exploiting knowledge from different sources

- automatic generation of assertions based on:
static analysis and profiling
properties of target system hardware and software
application domain (libraries, data structures, data distributions)

- user-provided assertions and invariants

¢ Leveraging existing technology
- fixed-redundancy for small critical areas in a program
- Algorithm-Based Fault Tolerance (ABFT): standard matrix methods
- integration of high-level generator systems such as CMU’s “SPIRAL”

JPL Example: PGAS vs. HPCS
Setting up a block-distributed array in Titanium vs. Chapel

Titanium: a dialect of Java that supports distributed multi-dimensional arrays,
iterators, subarrays, and synchronization/communication primitives

Titanium Code Fragment Chapel Code Fragment
/I determine parameters of local block: _ : L
Point<3> startCell = myBlockPos * numCellsPerBlockSide; SOt 2 S dftrl'bUte? (bloclk) _
Point<3> endCell = startCell + (numCellsPerBlockSide-[1,1,1]); =[11..u3,12.u2,13..u3];
//create local myBlock array: vl e logf el
double [3d] myBlock = new double[startCell:endCell];

//build the distributed structure:
//declare blocks as 1D-array of references (one element per processor)
blocks.exchange(myBlock);

PO P1

blocks

blocks P2 blocks

.

myBlock myBlock myBlock

Source: K.Yelick et al.: Parallel Languages and Compilers: Perspective from the Titanium Experience

