
1

1

Reinventing
High Performance Computing

Burton Smith
Technical Fellow

2

Times are Changing

[Thanks to Herb Sutter]



2

3

Parallel Computing is Now Mainstream
Single processor performance is leveling off

Instruction-level parallelism is near its limit (the ILP Wall)
Power per chip is getting painfully high (the Power Wall)
Caches show diminishing returns (the Memory Wall)

Meanwhile, logic cost ($ per gate-Hz) continues to fall
How are we going to use all that hardware?

We expect new “killer apps” will need more performance
Semantic analysis and query
Improved human-computer interfaces (e.g. speech, vision) 
Games!

Microprocessors are now multi-core and/or multithreaded
But so far, it’s just “more of the same” architecturally
How are we going to program such systems?

4

The ILP Wall
There have been two popular approaches to ILP:

Vector instructions, including SSE and the like
The HPS† canon: out-of-order issue, in-order retirement, 
register renaming, branch prediction, speculation, …

Neither scheme generates much concurrency given a lot of:
Control-dependent computation
Data-dependent memory addressing (e.g. pointer-chasing)

In practice, we are limited to a few instructions/clock
If you doubt this, ask your neighborhood computer architect

Parallel computing is necessary for higher performance

† Y.N. Patt et al., "Critical Issues Regarding HPS, a High Performance Microarchitecture,“
Proc. 18th Ann. ACM/IEEE Int'l Symp. on Microarchitecture, 1985, pp. 109−116. 



3

5

The Power Wall
There are two ways to scale speed by a factor σ:

Scale the number of (running) cores by σ
Power will scale by the same factor σ

Scale the clock frequency f and voltage V by σ
Dynamic power will scale by σ3 (CV2f )
Static power will scale by σ (Vileakage)
Total power lies somewhere in between

Clock scaling is worse when σ > 1
This is part of the reason times are changing!

Clock scaling is better when σ < 1
Moral: if your multiprocessor is fully used but too hot, scale 
down voltage and frequency rather than processors

Parallel computing is necessary to save power

6

Power vs. Speed

C
hi

p 
Po

w
er

 D
is

si
pa

tio
n

Speed

This assumes a fixed
semiconductor process

S 2S 3S 4S 5S

P

2P

3P

4P

one core

two cores

three cores

four cores

five cores

(ty
pi

ca
l)

(1
00

%
 d

yn
am

ic
)

(10
0%

 sta
tic

)one core,
increased
frequency



4

7

The Memory Wall
We can build bigger caches from more plentiful transistors

Does this suffice, or is there a problem scaling up?
To deliver twice the performance with the same aggregate 
DRAM bandwidth, the cache miss rate must be cut in half
How much bigger does the cache have to be?†

For dense matrix-matrix multiply or dense LU, 4x bigger
For sorting or FFTs, the square of its former size
For sparse or dense matrix-vector multiply, forget it

Faster clocks and deeper interconnect increase miss latency
Higher performance makes higher latency inevitable

Latency and bandwidth are closely related

† H.T. Kung, “Memory requirements for balanced computer architectures,”
13th International Symposium on Computer Architecture, 1986, pp. 49−54.

8

Latency, Bandwidth, & Concurrency

bandwidth = 2

latency = 3

concurrency = 6

In any system that transports items from input to output 
without creating or destroying them,

Queueing theory calls this result Little’s Law

latency x bandwidth = concurrency



5

9

Overcoming the Memory Wall
Provide more memory bandwidth

Increase aggregate DRAM bandwidth per gigabyte
Increase the bandwidth of the chip pins

Use multithreaded cores to tolerate memory latency
When latency increases, just increase the number of threads
Significantly, this does not change the programming model

Use caches to improve bandwidth as well as latency
Make it easier for compilers to optimize locality
Keep cache lines short
Avoid mis-speculation in all its forms

Parallel computing is needed for processor/memory balance

10

The von Neumann Assumption
Namely, “there is a single program counter”

Mainstream computing has relied on it for about 60 years
Now this (and some things it brought along) must change

Serial execution lets programs schedule values into variables
Parallel execution makes this scheme hazardous

Serial programming is easier than parallel programming
But serial programs are now becoming slow programs

We need parallel programming paradigms that will make 
everyone who writes programs successful
The stakes for our field’s vitality are high
Mainstream computing must be reinvented



6

11

Consequences for HPC
HPC has been a lonely parallel outpost in a serial world

Parallel computing is now becoming mainstream
Consequences for HPC are likely to be:

A broadening spectrum of programming language choices
Routine combining of shared memory and message passing
Adaptation and use of mainstream software for HPC

Successful HPC product offerings might include:
HPC editions of client applications and tools
HPC services that enable or accelerate client applications
HPC systems that scale up the client architectural model

HPC will also be reinvented

12

Lessons From the Past
A great deal is already known about parallel computing

Programming languages
Compiler optimization
Debugging and performance tuning
Operating systems
Architecture

Most prior work was done with HPC in mind
Some ideas were more successful than others
Technical success doesn’t always imply commercial success



7

13

Parallel Programming Languages
There are (at least) two promising approaches:

Functional programming
Atomic memory transactions

Neither is completely satisfactory by itself
Functional programs don’t allow mutable state
Transactional programs implement dependence awkwardly

Data base applications show the synergy of the two ideas 
SQL is a “mostly functional” language
Transactions allow updates with atomicity and isolation

Many people think functional languages are inefficient
Sisal and NESL are excellent counterexamples
Both competed strongly with Fortran on Cray systems

Others believe the same is true of memory transactions
This remains to be seen; we have only begun to optimize

14

Shared Memory with Message Passing
This topic has been a tough challenge for HPC

Some “give up” and deploy an MPI process per PC
OpenMP is not very well-suited to message passing

The fork-join SPMD nature of the language is one problem
Instead, we need languages that can do both:

Nested parallelism on local memory-resident data structures
Parallel message sends and receives to other address spaces

This is absolutely necessary for many-core client systems
Local parallelism plus access to web data and services

It will also make multi-core HPC nodes more productive 



8

15

Compiler Optimizations for Parallelism
Some say automatic parallelization is a demonstrated failure

Vectorizing and parallelizing compilers (especially for the 
right architecture) have been a tremendous success
They have enabled machine-independent languages
What they do can be termed parallelism packaging

Even manifestly parallel programs need it
What failed is parallelism discovery, especially in-the-large

Dependence analysis is chiefly a local success
Locality discovery in-the-large has also been a non-starter

Locality analysis is another word for dependence analysis
The jury is still out on large-scale locality packaging
In any event, the mainstream needs optimizing compilers

This will benefit our HPC customers as well

16

Parallel Debugging and Tuning
Today, debugging relies on single-stepping and printf()

Single-stepping a parallel program is seldom effective
Conditional breakpoints have proven to be valuable

For both program and data
Support for ad-hoc data perusal is also very important

This is a kind of data mining application
Serial program tuning tries to discover where the program 
counter spends most of its time by sampling it 
In contrast, parallel program tuning tries to discover places 
where there is insufficient parallelism

A proven approach has been event logging with timestamps
We will want to extend these tools for our HPC customers

To achieve a single integrated view of the application
To get a higher level, more scalable user interface



9

17

Operating Systems for Parallelism
Operating systems must stop trying to schedule processors

Their job should be allocating processors and other resources
Resource changes should be negotiated with the user runtime

Work should be scheduled at user level
There’s no need for a change of privilege
Locality can be better preserved
Optimization becomes much more possible 
Blocked computations can become first-class

Quality of service is important for many mainstream uses
Deadlines are more relevant than priorities in such cases

Demand paging is a bad idea for most parallel applications
Everything ends up waiting on the faulting computation

Windows will steadily improve for parallel clients and HPC

18

Parallel Architecture
Hardware has had a head start at parallelism

That doesn’t mean it’s way ahead!
Artifacts of the von Neumann assumption abound

Interrupts, for example
Most of these are pretty easy to repair

A bigger issue is support for fine-grain parallelism
Thread granularity depends on the amount of state per thread 
and on how much it costs to swap it when the thread blocks

Another is whether all processors should look the same
There are good reasons for heterogeneity

Heterogeneous architectures or heterogeneous implementations
Shared memory can be used to communicate among them
Homogeneous architectural data types will help performance

The biggest issue may be how to maintain system balance



10

19

Conclusions
We are now rethinking many of the basics of computing
There is lots of work for everyone to do

I’ve left some subjects out, especially applications
HPC has given us valuable experience with parallelism

Much of it will be applicable going forward
HPC will benefit from mainstream parallel computing


