Reinventing

High Performance Computing

Burton Smith
Technical Fellow

[T o = /e
VIR STl

Times are Changing

10,000,000

1,000,000

100,000

10,000

1,000

100

10

1

o

(sources

L ntel, Wikipedia, K. Olukotun)

| o
| 5
| o
5
S
5
<
T

Intel CPU Trends

-

"

o

|ln = Transistors (000) |
| * Clock Speed (MHz)
s e i a Power (W)
® ParfiClock

i]

1970 1975 1980 1985 1990 1995 2000 2005 2010

[Thanks to Herb Sutter]

[T o = /e
VIR STl

Parallel Computing is Now Mainstream

« Single processor performance is leveling off
o Instruction-level parallelism is near its limit (the ILP Wall)
o Power per chip is getting painfully high (the Power Wall)
o Caches show diminishing returns (the Memory Wall)

« Meanwhile, logic cost ($ per gate-Hz) continues to fall
o How are we going to use all that hardware?

« We expect new “killer apps” will need more performance
o Semantic analysis and query
o Improved human-computer interfaces (e.g. speech, vision)
o Games!

« Microprocessors are now multi-core and/or multithreaded
o But so far, it’s just “more of the same” architecturally
o How are we going to program such systems?

i 17 e ‘3
RVINFI s EAPIL

The ILP Wall

« There have been two popular approaches to ILP:
o Vector instructions, including SSE and the like

o The HPST canon: out-of-order issue, in-order retirement,
register renaming, branch prediction, speculation, ...

« Neither scheme generates much concurrency given a lot of:
o Control-dependent computation
o Data-dependent memory addressing (e.g. pointer-chasing)
« In practice, we are limited to a few instructions/clock
o If you doubt this, ask your neighborhood computer architect
« Parallel computing is necessary for higher performance

T Y.N. Patt et al., "Critical Issues Regarding HPS, a High Performance Microarchitecture,
Proc. 18th Ann. ACM/IEEE Int'l Symp. on Microarchitecture, 1985, pp. 109—116.

i 17 e ‘3
RVINFI s EAPIL

The Power Wall

« There are two ways to scale speed by a factor c:
o Scale the number of (running) cores by o
« Power will scale by the same factor ¢
o Scale the clock frequency f and voltage V by o
= Dynamic power will scale by o3 (CV?f)
« Static power will scale by & (Vijezage)
« Total power lies somewhere in between
« Clock scaling is worse when ¢ > 1
o This is part of the reason times are changing!
« Clock scaling is better when o < 1

o Moral: if your multiprocessor is fully used but too hot, scale
down voltage and frequency rather than processors

« Parallel computing is necessary to save power

H .)_«' “ . e
RVINFI s EAPIL

Power vs. Speed

g
5
< ‘Tive cores
>
<

c

=]

g 4P £S

[oR

2

a

- 3P

(5}

=

o

o

2 2P

e

(@)

P one core - -
This assumes a fixed
semiconductor process

| | |

S 2S 3S 4S 58
Speed

10 “ . /e
RVINFI s P I

The Memory Wall

« We can build bigger caches from more plentiful transistors
o Does this suffice, or is there a problem scaling up?

« To deliver twice the performance with the same aggregate
DRAM bandwidth, the cache miss rate must be cut in half

« How much bigger does the cache have to be?’
o For dense matrix-matrix multiply or dense LU, 4x bigger
o For sorting or FFTs, the square of its former size
o For sparse or dense matrix-vector multiply, forget it
« Faster clocks and deeper interconnect increase miss latency
o Higher performance makes higher latency inevitable
« Latency and bandwidth are closely related

t H.T. Kung, “Memory requirements for balanced computer architectures,”
13t International Symposium on Computer Architecture, 1986, pp. 49—54.

H .)_«' = e
RVINFI s EAPIL

Latency, Bandwidth, & Concurrency

« In any system that transports items from input to output
without creating or destroying them,

latency x bandwidth = concurrency

« Queueing theory calls this result Little’s Law

| concurrency = 6 ‘

latency = 3

bandwidth = 2

i 17 e il
RVINFI s EAPIL

Overcoming the Memory Wall

« Provide more memory bandwidth
o Increase aggregate DRAM bandwidth per gigabyte
o Increase the bandwidth of the chip pins
« Use multithreaded cores to tolerate memory latency
o When latency increases, just increase the number of threads
o Significantly, this does not change the programming model
« Use caches to improve bandwidth as well as latency
o Make it easier for compilers to optimize locality
o Keep cache lines short
o Avoid mis-speculation in all its forms
« Parallel computing is needed for processor/memory balance

i 17 e ‘3
RVINFI s EAPIL

The von Neumann Assumption

« Namely, “there is a single program counter”
o Mainstream computing has relied on it for about 60 years
« Now this (and some things it brought along) must change
o Serial execution lets programs schedule values into variables
o Parallel execution makes this scheme hazardous
« Serial programming is easier than parallel programming
o But serial programs are now becoming slow programs

« We need parallel programming paradigms that will make
everyone who writes programs successful

« The stakes for our field’s vitality are high
» Mainstream computing must be reinvented

i 17 e ‘3
RVINFI s EAPIL

Consequences for HPC

« HPC has been a lonely parallel outpost in a serial world
o Parallel computing is now becoming mainstream

« Consequences for HPC are likely to be:
o A broadening spectrum of programming language choices
o Routine combining of shared memory and message passing
o Adaptation and use of mainstream software for HPC

« Successful HPC product offerings might include:
o HPC editions of client applications and tools
o HPC services that enable or accelerate client applications
o HPC systems that scale up the client architectural model

« HPC will also be reinvented

i 17 e ‘3
RVINFI s EAPIL

Lessons From the Past

« A great deal is already known about parallel computing
o Programming languages
o Compiler optimization
o Debugging and performance tuning
o Operating systems
o Architecture
« Most prior work was done with HPC in mind
o Some ideas were more successful than others
o Technical success doesn’t always imply commercial success

i 17 e ‘3
RVINFI s EAPIL

Parallel Programming Languages

« There are (at least) two promising approaches:
o Functional programming
o Atomic memory transactions
« Neither is completely satisfactory by itself
o Functional programs don’t allow mutable state
o Transactional programs implement dependence awkwardly
« Data base applications show the synergy of the two ideas
o SQL is a “mostly functional” language
o Transactions allow updates with atomicity and isolation
« Many people think functional languages are inefficient
o Sisal and NESL are excellent counterexamples
o Both competed strongly with Fortran on Cray systems
« Others believe the same is true of memory transactions
o This remains to be seen; we have only begun to oPtE[nize

RYINsTAC oI

Shared Memory with Message Passing

« This topic has been a tough challenge for HPC
o Some “give up” and deploy an MPI process per PC
« OpenMP is not very well-suited to message passing
o The fork-join SPMD nature of the language is one problem
« Instead, we need languages that can do both:
o Nested parallelism on local memory-resident data structures
o Parallel message sends and receives to other address spaces
« This is absolutely necessary for many-core client systems
o Local parallelism plus access to web data and services
« It will also make multi-core HPC nodes more productive

i 17 e ‘3
RVINFI s EAPIL

Compiler Optimizations for Parallelism

« Some say automatic parallelization is a demonstrated failure

o Vectorizing and parallelizing compilers (especially for the
right architecture) have been a tremendous success

o They have enabled machine-independent languages
o What they do can be termed parallelism packaging
o Even manifestly parallel programs need it
« What failed is parallelism discovery, especially in-the-large
o Dependence analysis is chiefly a local success
« Locality discovery in-the-large has also been a non-starter
o Locality analysis is another word for dependence analysis
« The jury is still out on large-scale locality packaging
« In any event, the mainstream needs optimizing compilers
o This will benefit our HPC customers as well

i 17 e ‘3
RVINFI s EAPIL

Parallel Debugging and Tuning

« Today, debugging relies on single-stepping and printf()
o Single-stepping a parallel program is seldom effective

« Conditional breakpoints have proven to be valuable
o For both program and data

« Support for ad-hoc data perusal is also very important
o This is a kind of data mining application

« Serial program tuning tries to discover where the program
counter spends most of its time by sampling it

« In contrast, parallel program tuning tries to discover places
where there is insufficient parallelism

o A proven approach has been event logging with timestamps
« We will want to extend these tools for our HPC customers

o To achieve a single integrated view of the application

o To get a higher level, more scalable user interface

i 17 e ‘3
RVINFI s EAPIL

Operating Systems for Parallelism

« Operating systems must stop trying to schedule processors
o Their job should be allocating processors and other resources
o Resource changes should be negotiated with the user runtime
» Work should be scheduled at user level
o There’s no need for a change of privilege
o Locality can be better preserved
o Optimization becomes much more possible
o Blocked computations can become first-class
« Quality of service is important for many mainstream uses
o Deadlines are more relevant than priorities in such cases
« Demand paging is a bad idea for most parallel applications
o Everything ends up waiting on the faulting computation
« Windows will steadily improve for parallel clients and HPC

i 17 e ‘3
RVINFI s EAPIL

Parallel Architecture

« Hardware has had a head start at parallelism
o That doesn’t mean it’s way ahead!

« Artifacts of the von Neumann assumption abound
o Interrupts, for example
o Most of these are pretty easy to repair

« A bigger issue is support for fine-grain parallelism

o Thread granularity depends on the amount of state per thread
and on how much it costs to swap it when the thread blocks

« Another is whether all processors should look the same
o There are good reasons for heterogeneity
« Heterogeneous architectures or heterogeneous implementations
o Shared memory can be used to communicate among them
o Homogeneous architectural data types will help performance

« The biggest issue may be how to maintain system balance

i 17 e ‘3
RVINFI s EAPIL

Conclusions

« We are now rethinking many of the basics of computing
« There is lots of work for everyone to do
o I’ve left some subjects out, especially applications
« HPC has given us valuable experience with parallelism
o Much of it will be applicable going forward
« HPC will benefit from mainstream parallel computing

i 17 e il
RVINFI s EAPIL

10

