An Overview of High Performance Computing and Future Requirements

J ack Dongarra
University of Tennessee
Oak Ridge National Laboratory

TOPS믕

H. Meuer, H. Simon, E. Strohmaier, \& JD

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP

$$
A x=b \text {, dense problem }
$$

- Updated twice a year
 SC ${ }^{\text {‘xy }}$ in the States in November Meeting in Germany in June
- All data available from www.top500.org

Performance Development

Performance of Top25 Over 10 Years

Cores in the Top25 Over Last 10 Years

Looking at the Gordon Bell Prize

(Recognize outstanding achievement in high-performance computing applications and encourage development of parallel processing)
$\square 1$ GFlop/s; 1988; Cray Y-MP; 8 Processors
\square Static finite element analysis
$\square 1$ TFlop/s; 1998; Cray T3E; 1024 Processors
\square Modeling of metallic magnet atoms, using a variation of the locally self-consistent multiple
 scattering method.
$\square 1$ PFlop/s; 2008; Cray XT5; 1.5×105 Processors
\square Superconductive materials

$\square 1 \mathrm{EFlop} / \mathrm{s} ; \sim 2018 ; \quad$? 1×10^{7} Processors (10^{9} threads)

Performance Development in Top500

${ }^{\text {ruw }}$ Processors Used in Supercomputers

${ }^{\text {acw }}$ Countries / System Share

Customer Segments

ICL UT
 Industrial Use of Supercomputers

- Of the 500 Fastest Supercomputer
- Worldwide, Industrial Use is > 60\%

- Aerospace
- Automotive
- Biology
-CFD
- Database
- Defense
- Digital Content Creation
- Digital Media
- Electronics
- Energy
- Environment
- Finance
- Gaming
- Geophysics

- Image Proc./Rendering
- Information Processing Service
- Information Service
- Life Science
- Media
- Medicine
- Pharmaceutics
- Research
- Retail
- Semiconductor
- Telecomm
- Weather and Climate Research
- Weather Forecasting

$33^{\text {rd }}$ List: The TOP10

Rank	Site	Computer	Country	Cores	Rmax [Tflops]	\% of Peak
1	DOE / NNSA Los Alamos Nat Lab	Roadrunner / IBM BladeCenter QS22/LS21	USA	129,600	1,105	76
2	DOE / OS Oak Ridge Nat Lab	Jaguar / Cray Cray XT5 QC 2.3 GHz	USA	150,152	1,059	77
3	Forschungszentrum Juelich (FZJ)	Jugene / IBM Blue Gene/P Solution	Germany	294,912	825	82
4	NASA / Ames Research Center/NAS	Pleiades / SGI SGI Altix ICE 8200EX	USA	51,200	480	79
5	DOE / NNSA Lawrence Livermore NL	BlueGene/L IBM eServer Blue Gene Solution	USA	212,992	478	80
6	NSF NICS/U of Tennessee	Kraken / Cray Cray XT5 QC 2.3 GHz	USA	66,000	463	76
7	DOE / OS Argonne Nat Lab	Intrepid / IBM Blue Gene/P Solution	USA	163,840	458	82
8	NSF TACC/U. of Texas	Ranger / Sun SunBlade $\times 6420$	USA	62,976	433	75
9	DOE / NNSA Lawrence Livermore NL	Dawn / IBM Blue Gene/P Solution	USA	147,456	415	83
10	Forschungszentrum Juelich (FZJ)	JUROPA /Sun - Bull SA NovaScale /Sun Blade	Germany	26,304	274	89

$33^{\text {rd }}$ List: The TOP10

Rank	Site	Computer	Country	Cores	Rmax [Tflops]	\% of Peak	Power [MW]	Flops/ Watt
1	DOE / NNSA Los Alamos Nat Lab	Roadrunner / IBM BladeCenter QS22/LS21	USA	129,600	1,105	76	2.48	446
2	DOE / OS Oak Ridge Nat Lab	Jaguar / Cray Cray XT5 QC 2.3 GHz	USA	150,152	1,059	77	6.95	151
3	Forschungszentrum Juelich (FZJ)	Jugene / IBM Blue Gene/P Solution	Germany	294,912	825	82	2.26	365
4	NASA / Ames Research Center/NAS	Pleiades / SGI SGI Altix ICE 8200EX	USA	51,200	480	79	2.09	230
5	DOE / NNSA Lawrence Livermore NL	BlueGene/L IBM eServer Blue Gene Solution	USA	212,992	478	80	2.32	206
6	NSF NICS/U of Tennessee	Kraken / Cray Cray XT5 QC 2.3 GHz	USA	66,000	463	76		
7	DOE / OS Argonne Nat Lab	Intrepid / IBM Blue Gene/P Solution	USA	163,840	458	82	1.26	363
8	NSF TACC/U. of Texas	Ranger / Sun SunBlade $\times 6420$	USA	62,976	433	75	2.0	217
9	DOE / NNSA Lawrence Livermore NL	Dawn / IBM Blue Gene/P Solution	USA	147.456	415	83	1.13	367
10	Forschungszentrum Juelich (FZJ)	JUROPA /Sun - Bull SA NovaScale /Sun Blade	Germany	26,304	274	89	1.54	178

Distribution of the Top500

15 Systems on Top 500 in Japan

	Site
22	The Earth Sim
	The Earth Simulator Center
28	JAXA
	Institute of Physical and
40	Chemical Res. (RIKEN)
41	GSIC Center, Tokyo
	Institute of Technology
	Information Technology
	Center, The University of
42	Tokyo
	Center for Computational
	Sciences, University of
47	Tsukuba
	National Institute for Fusion
65	Science (NIFS)
	University of Tokyo/Human
69	Genome Center, IMS
78	Kyoto University
	National Institute for
93	Materials Science
	National Astronomical
259	Observatory of Japan
	National Astronomical
277	Observatory of Japan
	Computational Biology
394	Research Center, AIST
	High Energy Accelerator
	Research Organization
397	/KEK
	High Energy Accelerator
	Research Organization
398	/KEK

LANL Roadrunner A Petascale System in 2008

"Connected Unit" cluster ($180 \mathrm{w} / 2$ dual-Cell blades connected w/ 4 PCle x8

192 Opteron nodes
₹ 13,000 Cell HPC chips
$\bullet \approx 1.33$ PetaFlop/s (from Cell)
$\approx 7,000$ dual-core Opterons
$\approx 122,000$ cores

17 clusters

- ••
$2^{\text {nd }}$ stage InfiniBand $4 x$ DDR interconnect (18 sets of 12 links to 8 switches)
$2^{\text {nd }}$ stage InfiniBand interconnect (8 switches)
Based on the 100 Gflop/s (DP) Cell chip
Hybrid Design (2 kinds of chips \& 3 kinds of cores)
Programming required at 3 levels.

Dual Core Opteron Chip

ORNL/UTK Computer Power Cost Projections 2008-2012

- Over the next 5 years ORNL/UTK will deploy 2 large Petascale systems
- Using 15 MW today
- By 2012 close to 50MW!!
- Power costs close to \$10M today.
- Cost estimates based on $\$ 0.07$ per KwH

Power becomes the architectural driver for future large systems

Cost Per Year

Something's Happening Here...

- In the "old days" it was: each year processors would become faster
- Today the clock speed is fixed or getting slower
- Things are still doubling every 18-24 months
Moore's Law reinterpretated.
- Number of cores double every 18-24 months

Moore's Law Reinterpreted

- Number of cores per chip doubles every 2 year, while clock speed decreases (not increases).
- Need to deal with systems with millions of concurrent threads
- Future generation will have billions of threads!
- Need to be able to easily replace interchip parallelism with intro-chip parallelism
- Number of threads of execution doubles every 2 year

Power Cost of Frequency

- Power \propto Voltage 2 x Frequency (${ }^{2}$ F)
- Frequency \propto Voltage
- Power \propto Freauencv ${ }^{3}$

Power Cost of Frequency

- Power \propto Voltage 2 x Frequency (${ }^{2}$ F)
- Frequency \propto Voltage
- Power \propto Freauencv ${ }^{3}$

Power	Cores	V	Freq	Perf	Power	PE
Superscalar		1	1	1	1	1
"New" Superscalar	$1 \times$	1.5X	1.5X	1.5X	3.3 X	0.45X
Multicore		0.75x	0.75x)	1.5X	0.8X	$1.88 \mathrm{X}$

50% more performance with 20% less power
Preferable to use multiple slower devices, than one superfast device

© Today’s Multicores

 99% of Top500 Systems Are Based on Multicore

Intel Clovertown (4 cores)

Intel Polaris (80 cores)

Cores per Socket

TOPSOO
 SUPERCOMPUTER SITES

ICL UT
 What's Next?

All Large Core

Many Floating-
Point Cores

Different Classes of
Chips
Home
Games / Graphics
Business
Scientific

+ 3D Stacked
Memory

Commodity

- Moore’s "Law" favored consumer commodities
- Economics drove enormous improvements
- Specialized processors and mainframes faltered
- Custom HPC hardware largely disappeared
- Hard to compete against 50\% year improvement
- Implications
- Consumer product space defines outcomes
- It does not always go where we hope or expect
- Research environments track commercial trends
- Driven by market economics
- Think about processors, clusters, commodity storage

Future Computer Systems

- Most likely be a hybrid design
- Think standard multicore chips and accelerator (GPUs)
- Today accelerators are attached
- Next generation more integrated
- Intel's Larrabee in 2010
- 8,16,32, or 64×86 cores
- AMD's Fusion in 2011

Intel Larrabee

- Multicore with embedded graphics ATI
- Nvidia's plans?

Architecture of Interest

- Manycore chip
- Composed of hybrid cores
- Some general purpose
- Some graphics
- Some floating point

Architecture of Interest

- Board composed of multiple chips sharing memory

Architecture of Interest

－Rack composed of multiple boards

Architecture of Interest

- A room full of these racks

- Think millions of cores

Moore's Law Reinterpreted

- Number of cores per chip doubles every 2 year, while clock speed decreases (not increases).
- Need to deal with systems with millions of concurrent threads
- Future generation will have billions of threads!
- Need to rethink the design of our software
- Very disruptive technology
- Number of threads of execution doubles every 2 year

Major Changes to Software

- Must rethink the design of our software
- Another disruptive technology
- Similar to what happened with cluster computing and message passing
- Rethink and rewrite the applications, algorithms, and software
- Numerical libraries for example will change
- For example, both LAPACK and Scal_APACK will undergo major changes to accommodate this

A Quasi Mainstream Programming Models

- C, Fortran, C++ and MPI
- OpenMP, pthreads
- (CUDA, RapidMind, Cn) \rightarrow OpenCL
- PGAS (UPC, CAF, Titanium)
- HPCS Languages (Chapel, Fortress, X10)
- HPC Research Languages and Runtime
- HLL (Parallel Matlab, Grid Mathematica, etc.)

DOE Office of Science

- ORNL has proposed a system to meet DOE's requirement for 20-40 PF of compute capability split between the Oak Ridge and Argonne LCF centers
- ORNL's proposed system will be based on accelerator technology includes software development environment
- Plans are to deploy the system in late 2011 with users getting access in 2012

Sequoia LLNL

- Diverse usage models drive platform and simulation environment requirements
- Will be 2D ultra-res and 3D high-res Quantification of Uncertainty engine
- 3D Science capability for known unknowns and unknown unknowns
- Peak 20 petaFLOP/s - IBM BG/Q
- Target production 2011-2016
- Sequoia Component Scaling
- Memory B:F = 0.08
- Mem BW B:F = 0.2
- Link BW B:F = 0.1
- Min Bisect B:F = 0.03
- SAN BW GB/:PF/s = 25.6
- F is peak FLOP/s

Blue Waters - The lay of the land

Blue Waters is the powerhouse of the National Science Foundation's strategy to support supercomputers for scientists nationwide

T1	Blue Waters	NCSA/Illinois	1 petaflop sustained per second
	Roadrunner	DOE/Los Alamos	1.3 petaflops peak per second
T2	Ranger	TACC/Texas	504 teraflops peak per second
	Kraken	NICS/Tennessee	1 petaflops peak per second
T3	Campuses across the U.S.	Several sites	50-100 teraflops peak per second

Blue Waters - Main Characteristics

- Hardware:
- Processor: IBM Power7 multicore architecture
- More than 200,000 cores will be available
- Capable of simultaneous multithreading (SMT)
- Vector multimedia extension capability (VMX)
- Four or more floating-point operations per cycle
- Multiple levels of cache - L1, L2, shared L3
- 32 GB+ memory per SMP, 2 GB+ per core
- 16+ cores per SMP
- 10+ Petabytes of disk storage
- Network interconnect with RDMA technology

DARPA Ubiquitous High Performance Computing Goals

- one PFLOPS, air-cooled, single 19-inch cabinet ExtremeScale system. The power budget for the cabinet is 57 kW including cooling-
- achieve 50 GFLOPS/W for the High-Performance Linpack (HPL) benchmark.
- The system design should provide high performance for scientific and engineering applications.
- The processor node should be capable of being used within terascale embedded and multiple cabinet systems.
- The system should be a highly programmable system that does not require the application developer to directly manage the complexity of the system to achieve high performance.
- The system must explicitly show a high degree of innovation and software and hardware co-design throughout the life of the program.

Exascale Computing

- Exascale systems are likely feasible by 2017 ± 2
- 10-100 Million processing elements (cores or mini-cores) with chips perhaps as dense as 1,000 cores per socket, clock rates will grow more slowly
- 3D packaging likely
- Large-scale optics based interconnects
- 10-100 PB of aggregate memory
- Hardware and software based fault management
- Heterogeneous cores
- Performance per watt -stretch goal 100 GF/watt of sustained performance $\Rightarrow \gg 10$ - 100 MN Exascale system
- Power, area and capital costs will be significantly higher than for today's fastest systems

Conclusions

- Moore's Law Reinterpreted
- Number of cores per chip doulbles every two year, while clock speed roughly stable
- Threads of execution double every 2 years
- 100 M cores
- Need to deal with systems with millions of concurrent threads
- Future generation will have billions of threads!
- MPI and programming languages from the 60's will not make it
- Power limiting clock rate growth
- Power becomes the architectural driver for Exescale systems.

Conclusions

- For the last decade or more, the research investment strategy has been overwhelmingly biased in favor of hardware.
- This strategy needs to be rebalanced barriers to progress are increasingly on the software side.
- Moreover, the return on investment is more favorable to software.
- Hardware has a half-life measured in years, while software has a half-life measured in decades.
- High Performance Ecosystem out of balance
- Hardware, OS, Compilers, Software, Algorithms, Applications
- No Moore's Law for software, algorithms and applications

Collaborators / Support

Employment opportunities for

Microsoft

 post-docs in the ICL group at Tennessee- Top500
- Hans Meuer, Prometeus
- Erich Strohmaier, LBNL/NERSC
- Horst Simon, LBNL/NERSC

If you are wondering what's beyond ExaFlops

Mega, Giga, Tera,	10^{24}	yotta	
Peta, Exa, Zetta	10^{27}	xona	
		10^{30}	wela
10^{3}	kilo	10^{33}	vunda
10^{6}	mega	10^{36}	uda
10^{9}	giga	10^{39}	treda
10^{12}	tera	10^{42}	sorta
10^{15} peta	10^{45}	rinta	
10^{18} exa	10^{48}	quexa	
10^{21} zetta	10^{51}	pepta	
		10^{54}	ocha
		10^{57}	nena
		10^{60}	minga
		10^{63}	luma

