

PRIMEHPC FX10後継機における 性能と評価

2014年10月29日 富士通株式会社 千葉 修一

Copyright 2014 FUJITSU LIMITED

Agenda

■PRIMEHPC FX10後継機 (Post-FX10)

■ノード性能の評価

- ■1コア性能
- ■SIMD性能
- ■スレッド並列性能
- ■アプリケーション性能

■まとめ

Post-FX10

Post-FX10 (1)

■FX10のフィードバック

システム性能は評価高

- •Tofuインターコネクトによる高いスケーラビリティ
- •超並列システムとして他に類を見ない信頼性
- •大規模演算を高速化する高いメモリスループット

VISIMPACTによるハイブリッド並列

■課題点 システムアーキの継承

ノード性能が課題

- •アウトオブオーダの資源不足 CPUコアの強化
- •L1キャッシュが貧弱

•最適化の機能不足

Post-FX10

Tofuの強化

コンパイラの強化

Post-FX10 (3)

■Tofu2

■「京」互換のトポロジ、通信方式

■複数RDMAエンジンによる高速集団通信

■ハードウェアバリアのサポート

	京/FX10	Post-FX10	
CPUとの関係	別LSI(ICC)	内蔵	
トポロジ	6次元メッシュ/トーラス	\leftarrow	
リンクハ゛ント、「幅	5 GB/s (6.25 Gbps x 8 lanes x 10 dirs)	12.5 GB/s (25 Gbps x 4 lanes x 10 dirs)	
ノート゛ハ゛ント゛幅	20 GB/s x in/out	50 GB/s x in/out	
新機能	-	キャッシュ インジェクション アトミック シャーシ間接続 (全体の2/3)を光化	

Post-FX10 (4)

■Rack ■216ノード / キャビネット ■CPU、メモリ、光モジュールを直接水冷(水冷率90%)

Chassis

■19インチランクマウント型シャーシ

■12ノード / 2U

■本体装置間 Tofu2は光接続

CPU Memory Board
 CPU x 3
 3 x 8 Micron's HMCs

Post-FX10 (5)

■ SPARC64TM XIfx ■HPC-ACE2 ■L1キャッシュ、Wayを2倍 ■スーパースカラーの強化 アウトオブオーダ資源の増加 分岐予測の強化 ■256 bit wide SIMD ●単精度倍幅モード •8バイト整数命令 ■アシスタントコア •IO・OS・通信のデーモンを処理 ▶OSノイズの低減 ▶演算と通信のオーバラップ化

FUITSU

Post-FX10 (6)

■SPARC64TM XIfx

	京	FX10	Post-FX10	
アーキテクチャ	SPARC64 VIIIfx	SPARC64 IXfx	SPARC64 XIfx	
CPU性能	128 GFlops	236.5 GFlops	1 TFlops Class	
コア数/CPU	8	16	32+2*	
SIMD データ幅	倍精度浮動小数点x2	倍精度浮動小数点x2	倍精度浮動小数点 x4 単精度浮動小数点 x8 64bit整数 x4	
キャッシュ	L1I\$:32KB/core (2way) L1D\$:32KB/core (2way) L2\$: 6MB/CPU	L1I\$:32KB/core (2way) L1D\$:32KB/core (2way) L2\$: 12MB/CPU	L1I\$:64KB/core (4way) L1D\$:64KB/core (4way) L2\$: 24MB/CPU	
メモリ	16GB	32GB/64GB	32GB	
スループット	64GB/s	85GB/s	240GB/s x2(R/W)	
			*アシスタントコア	

ノード性能を支える技術

FX10の評価

■ノード性能の課題

■命令レベルの並列化が弱い

•実アプリケーションへのSIMD命令適用率が低い

アプリケーションの高速化にチューニングが必須
 L1キャッシュの32KB/2WAYが使いにくい
 実行性能にブレが発生する
 チューニング時、キャッシュ効率or最適化の選択肢が難しい
 コンパイラの最適化が不足

■C/C++アプリケーションの性能問題 ・富士通コンパイラよりGNUコンパイラの翻訳コードの方が高速

これらの課題を改善する機能を開発

ノード性能を支える技術

HPC-ACE2 (High Performance Computing - Arithmetic Computational Extensions 2)
 256 bit wide SIMD
 HPC向け拡張命令

■メモリ/キャッシュ ■HMC採用によるスループット強化 ■L1キャッシュの強化

■コンパイラ

■最適化の強化

■並列化解析能力の強化

各改善が連動することで最大限の性能を引き出す

FUITSU

HPC-ACE2 (1)

FX10に比べ、倍精度2倍・単精度4倍のSIMD幅を実現

FUITSU

HPC-ACE2 (2)

■HPC-ACE(FX10)からの拡張

- Stride Load/Store
- Indirect Load/Store
- Permutation
- Concatenate

多種のカーネルに対してコンパイラがSIMD化を適用可能

メモリ/キャッシュ

■メモリ/キャッシュの強化 ■HMCサポートによるスループット強化 ■L1キャッシュの強化

	京	FX10	Post-FX10	
L 1 <i>キ</i> ャッシュ (命令)	32KB/core (2way)	32KB/core (2way)	64KB/core (4way)	
L 1キャッシュ (データ)	32KB/core (2way)	32KB/core (2way)	64KB/core (4way)	
L 2 キャッシュ	L2\$: 6MB/CPU	L2\$: 12MB/CPU	L2\$: 24MB/CPU	
メモリ	32GB	32GB/64GB	32GB	
スループット	64GB/s	85GB/s	240GB/s x2(R/W)	

キャッシュサイス^{*} & WAY数は2倍、スルーフ[®]ットは大幅に増加

各種アプリケーションに対する最適化の適用率をアップ

コンパイラ(2)
コンパイラの並列化解析能力を強化
命令レベルの並列化
コアレベルの並列化
etc.

ループ内の演算	データ依存関係	その他		
四則演算	依存なし	データ型		
リダクション演算	順方向依存	対象ループ次元		
収集・拡散	逆方向依存	粒度		
DOブランチ		分岐		

並列化解析の対象要因の一例

VPPの技術をベースに解析能力を強化

ノード性能の評価

ノード性能の評価

■4つの観点で評価

1コア性能

1コア性能(1)

ABCMarks

素性能を評価する目的で自社開発したカーネル群 (EuroBen Benchmarkライクなコード)

■連続アクセス系カーネル

■不連続アクセス系カーネル

■マスク系カーネル

コンパイラがHPC-ACE2を使い切れているかを評価

1コア性能(2)

■連続アクセス系カーネル ストリーム、DAXPYを含む基本カーネル

1コア性能(3)

■不連続アクセス系カーネル ストライド、インダイレクトアクセスを含む基本カーネル

1コア性能(4)

■マスク系カーネル

整数型の判定、浮動小数点型の判定を含む基本カーネル

※ 数値は、if構文の真率

1コア性能(5)

ABCMarks

連続アクセス系はほぼ想定どおり、不連続アクセス系、マスク系を改善中

チャレンジ目標に向けてコンパイラを改善中

連続体コードなどの間隔アクセスに対して性能効果

■アドレス計算もSIMD命令で並列計算

流体解析、FEMなどのリストアクセスに対して性能効果

FUITSU

SIMD性能

SIMD性能

評価カーネル (実アプリケーションから抽出) FX10 vs Post-FX10の実行性能を比較 周波数換算を行い、256 bit SIMD効果を可視化 FX10性能を"1.0"とした場合の比率を昇順にソート

平均2倍の性能向上し、256 bit SIMDは効果大

SIMD性能を支える技術(1)

- ループ内に4つのSIMDロード命令を出力
 b(i:i+3)、 b(i+1:i+4)、 b(i+2:i+5)、 b(i+3:i+6)
- この時、それぞれのロード命令に同じ要素が含まれる
- •冗長のロードがL1キャッシュを圧迫

SIMD性能を支える技術 (2)

■ステンシルコードの高速化

■コンカチネーションシフト命令の利用コード

enddo

コンカチネーションシフト命令によりロード命令が削減

SIMD性能を支える技術 (4)

■ハンドチューニング

■気象系コードへの適用事例

```
real(8)::b(0:6, Imax, kmax, 1:3)
(中略)
do l=1, Imax
!$omp do
do k=1, kmax
do n=nstart, nend
ij=n
q(n, k, l)=( &
+b(0, ij, l, 1)*vx(ij, k, l) &
+b(1, ij, l, 1)*vx(ij, k, l) &
:
+b(6, ij, l, 3)*vz(ij3, k, l) &
)*fact
```

<u>インダイレクトロードアクセス</u>

<u>ストライドロードアクセス</u>

判断材料を与えることでストライドロード命令を出力

SIMD性能 – 気象コード

■ハンドチューニングによる効果

スレッド並列性能

スレッド並列化性能

■ANL ベクトル化コンテスト

コンパイラの解析能力を判定するプログラムの全135ループを比較
 VPPの技術を完全に取り込み解析能力を強化

■「京」、FX10へフィードバック

コンパイラの解析能力の強化により並列化数が向上

アプリケーション性能

アプリケーション性能 – NPB (1)

NAS Parallel Benchmarks

アプリケーション性能 – NPB (2)

NAS Parallel Benchmarks

		メモリスループット (GB/s)	SIMD命令率 (%)	L1Dミス率 (%)	性能値 (MOP/s)	SIMD化 向上比率	性能値 向上比率
рт	FX10	11.9	11.6	3.4	19396	1.8	1.3
	Post-FX10	16.2	21.3	1.4	26114		
CG	FX10	17.7	22.7	35.5	2929	3.2	1.2
CG	Post-FX10	20.5	72.9	32.9	3403		
ED	FX10	5.8	0	1.5	305	1.0	1.3
LF	Post-FX10	7.2	0	0.8	391		
FT	FX10	32.1	63.4	7.8	10319	1.0	21
	Post-FX10	64.7	63.5	4.5	21445		2.1
τς	FX10	11.8	0	6.5	567	1.0	2.0
15	Post-FX10	23.7	0	5.0	1118		2.0
	FX10	56.7	25.0	6.6	18241	1.7	16
LU	Post-FX10	91.3	42.7	2.4	28706		1.0
MG	FX10	29.8	77.8	11.0	8923	1 1	3.0
	Post-FX10	108.3	87.9	1.3	31957	7.7	3.9
SP	FX10	67.3	28.4	5.6	11471	2.0	1.8
	Post-FX10	118.3	56.3	3.1	20149		

アプリケーション性能 - NPB (3)

NAS Parallel Benchmarks : FT

ストライド命令により命令の並列性が向上

アプリケーション性能 - NPB (4)

NAS Parallel Benchmarks : MG

108.3

MG

Post-FX10

L1Dキャッシュの強化により性能向上

1.3

31957

87.9

3.9

1.1

アプリケーション性能 – NPB (5)

■NAS Parallel Benchmarks : CG

リストアクセスに対するコンパイラの命令出力を改善中

アプリケーション性能 – OpenFOAM (1) Fujinsu

OpenFOAM 2.1.0

アプリケーション性能 – OpenFOAM (2) Fuirsu

OpenFOAM: sloshingTank3D/interDyMFoam

アウトオブオーダの強化により整数演算の並列性が向上

まとめ

Copyright 2014 FUJITSU LIMITED

Post-FX10の評価

■FX10で課題となったノード性能を大幅に改善 ■命令レベルの並列化を強化 HPC向け拡張命令、コンパイラの強化 ■チューニングレスでアプリケーションの高速化 256 bit wide SIMD、HMCサポート、L1キャッシュの強化 ■C/C++アプリケーションの性能向上 コンパイラの強化

HPCをトップレベルで牽引するPost-FX10に乞うご期待

FUJTSU

shaping tomorrow with you