2.1 圧縮性流体解析プログラムによる FX100 の性能評価と高速化チューニング 宇宙航空研究開発機構 宇宙科学研究所

高木 亮治

2.1.1 はじめに

JAXAで開発を行っている三次元圧縮性流体解析プログラムUPACS¹⁾はステンシル系プログ ラムである。ここではUPACSから機能を最低限に絞り込んだカーネルプログラムUPACS-Lite を用いて FX100 の性能評価ならびにチューニングを実施したのでその結果について紹介す る。

2.1.2 UPACS-Lite

UPACS-LiteはJAXAが開発している実用的なUPACSの機能を絞り込んで性能評価や高速化 チューニングを実施するためのカーネルプログラムである。UPACS-Liteでは対流項はMUSCL +SHUS、時間積分は2時精度Euler陰解法とし、MFGSで内部反復を2回、MFGSのスレッド 並列化にはBlock Red-Black法を利用、乱流モデルはなしの粘性計算、並列化はMPIとOpenMP を用いたハイブリッド並列としている。

UPACS-Lite では、支配方程式を有限体積法で離散化した離散方程式を解くことになるが、 その際の主要な構成要素としては、時間積分(左辺)、対流項、粘性項が存在する。それぞ れの計算は全てステンシル計算となるが、図 1で示すようにステンシルの形(メモリアク セスパターン、量)や演算パターン・量が異なる。

図 1 UPACS-Lite で使われるステンシル

また、UPACS では図 2 で示すように複数ブロックの構造格子を用いているため、通常の 計算ではブロックの大きさや形が異なり、その結果プログラム中では様々なループ長、特 にインデックス毎にループ長が異なることになり、高速化の際に注意する必要がある。

図 2 複数ブロックの構造格子をデータ構造にマッピング

2.1.3 測定環境

FX100 (JAXA の JSS2) を用いて性能評価を行った。表 1 に FX100 の諸元を示す。

	SORA-MA (FX100)	SORA-PP	
マシン	PRIMEHPC FX100	PRIMERGY RX350S8	
CPU	Fujitsu SPARC64™XIfx	Intel Xeon E5-2643V2	
周波数	1.975GHz	3.5GHz	
CPU/ノード	1	2	
コア/CPU	32	6	
コア/ノード	32	12	
理論性能	1.011TFLOPS	0.336TFLOPS	
メモリ性能	431GB/s	119.4GB/s	
コンパイルオプ	-Kfast, parallel, openmp, noalias=s、	-03 -parallel -openmp -fast	
ション	array_private, preex, ocl, XFILL -Qt		
	-x-		

表 1 測定環境(JAXA の FX100、一部に推定値あり)

2.1.4 測定結果

2.1.4.1 スレッドスケーラビリティ

ノード内スレッド並列性能のスケーラビリティを測定した結果を図 3に示す。ここでは 問題規模を一定にしたストロングスケーリングの性能を評価している。ブロックサイズを 増やす事で並列性能が向上していることがわかる。また 80%を目安と考えると8 スレッドま では十分な効率が出ていると判断した。図 3a)はデフォルトの状態、 図 3b)は実行時の オプションでインターリーブを用いた場合を示す。インターリーブを用いることで1スレ ッドの性能が悪化する。そのため多スレッドの性能は見かけ上向上する。

2.1.4.2 ハイブリッド並列

ハイブリッド並列の評価結果を図4に示す。

図 4 ハイブリッド並列 vs フラット MPI

1 ノードの結果でノードに割り当てるブロックサイズを 40³、80³、160³とした。ブロックの 1 辺の格子点数を N とすると、計算負荷と通信負荷は N³対 N²となるので N が大きいほど、相 対的に通信負荷が減りフラット MPI 優位になると考えられる。40³と 160³の比較ではその傾 向が見られるが、80³は異なる傾向となった。原因は不明である。64 ノードまでの計測を行 ったが結果は 1 ノードと変わらなかった。た多ノードになるほどハイブリッド並列が優位 になると想定されるが、この問題規模、H/W のバランス(CPU 演算速度と通信速度のバラン ス)ではハイブリッド並列の優位は見られなかった。今後大規模ノードでの計測を試みる。

2.1.4.3 FX1、FX10、FX100、インテル CPU との比較

FX1 (JSS)、FX10、FX100 (SORA-MA)、インテル CPU (SORA-PP)の比較を行った結果を図 5に 示す。図 5a)は H/W の性能差だけでなく後述する S/W チューニングを実施した効果を含 んだもの、図 5b)は同じプログラムで H/W の差異(各 H/W で再コンパイルは実施した)を 比較したものになる。S/W チューニングを含めると FX100 では FX1 の約 32 倍の性能が達成 できた。この時 FX100 で標準的な 1CPU を 2 プロセス 16 スレッドで利用している。なお、 フラット MPI の方が速く、その場合は約 37 倍の性能が出せた。一方、同一プログラムの再 コンパイルだけの比較では FX100 は FX1 に比べて約 11 倍となり、フラット MPI では約 16 倍となった。理論ピーク性能では FX100 は FX1 の約 25 倍となるべきであるが、H/W の性能 を活用するためにはチューニングが不可欠であることがわかる。

図 5 FX1, FX10, FX100, インテル CPU との比較

2.1.5 高速化チューニング

FX100向けにいくつかの高速化チューニングを実施した。詳細を表2に示す。

版	実施項目	
0	オリジナル (FX1 で利用)	
А	flux 配列の構造体の変更+SIMD 化促進	
В	jk ループの融合(スレッド並列数の確保)	
С	MFGS の書き下し+OCL の挿入	
D	flux 配列のインデックス変更	
	$(i, j, k, :) \rightarrow (:, i, j, k)$	
Е	flux 配列のインデックスの変更(CとDの比較で高速版を選択)	
	対流項:(i,j,k,:)	
	粘性項:(:,i,j,k)	
F	手動アンローリング	
	初期化のベクトル記述 : dq=0 → OpenMP で並列化	
	保存量ループの展開 (do n=1,nPhys を削除)	
G	2 重ループの一重化をやめて OpenMP の collapse(2)を利用	
	データ通信の前後処理部の OpenMP 化	
	nPhys ループの位置の変更	
	MFGS(時間積分)で使われている Block Red-Black のブロック分割の最適化	
?t	?={C, D, E, F, G}の cell 配列インデックスの変更(i, j, k, :) → (:, i, j, k)	

表 2 FX100 向け高速化チューニングの実施項目

これらの高速化チューニングは大きく分けると

- a) 配列のインデックスの変更
- b) データ構造(構造体)の変更
- c) SIMD 化の促進

に分けられる。a)の配列に関しては、プログラムの主要な配列としては有限体積法のセル で定義される cell 配列と、セル面の流束で定義される flux 配列がある。cell 配列はプロ グラムの中で大域的に使われる配列であるのに対し、flux 配列は対流項、粘性項の flux を 計算する時だけに使われる配列である。これらの配列のインデックスが所謂ベクトル型

(i, j, k, n) なのかスカラー型(n, i, j, k) が最適なのかを比較した。ここで、i, j, k が空間のインデックスを、n が物理量(乱流モデルなしの完全気体では5となる)を示す。b)の
 構造体に関しては flux 配列で使われるが、Structure of Array:SOA(配列の構造体)か Array of Structure:AOS(構造体の配列)のどちらが適切かを確認した。表3に具体例を示す。

0 (AOS)
type cellFaceType
real(8) :: area
real(8), dimension(5) :: flux
end type
<pre>type(cellFaceType), dimension(:,:,:), pointer :: cface</pre>
do n; do k; do j; do i
cface(i,j,k)%flux = …
enddo
A (SOA)
type cellFaceType
real(8) :: area
<pre>real(8), dimension(:,:,:,:), pointer :: flux</pre>
end type
type(cellFaceType) :: cface
do n; do k; do j; do i
cface%flux(i,j,k,n) = …
enddo

表 3 データ構造 (AOS、SOA) の例

c)に関しては現状のコンパイラの最適化性能に依存する部分が大きいが、ソースを書き換えることで SIMD 化を促進する.この部分に関しては、今後コンパイラの成熟とともに書き換えが不要になることが期待される。

1) 0からA

主に FX10 向けの高速化チューニングとして流束(対流項、粘性項)の計算部分に関して

- flux 配列を AOS から SOA に変更
- SIMD 化を促進するためにループ内の一時配列をスカラー化:a(3,3)をa_11, a_12, a_13, a_21, a_22, a_23, a_31, a_32, a_33 に修正
- 組み込み関数の手動展開

を実施した。特に SIMD 化に関しては現状では最内ループに SIMD 化が適用されるため、ル ープボディに配列のベクトル表記があるとその部分が SIMD 化されてしまい他のループボデ ィが SIMD 化されない状況となる。例えば

```
allocate(a(imax, 5), b(imax, 5), c(imax, 5))
    do i=1, imax
     u = a(i, 2)/a(i, 1)
     v = a(i, 3)/a(i, 1)
     a(i,:) = b(i,:) + c(i,:) ←ここだけ SIMD 化
    enddo
の場合、a(i,:) = ….の部分だけが SIMD 化されてしまい、残りの u = …, v = …, などが
SIMD 化されない。この場合
    allocate(a(imax, 5), b(imax, 5), c(imax, 5))
    do i=1, imax
     u = a(i, 2)/a(i, 1)
     v = a(i, 3)/a(i, 1)
     a(i, 1) = b(i, 1) + c(i, 1)
     a(i, 2) = b(i, 2) + c(i, 2)
      . . .
     a(i, 5) = b(i, 5) + c(i, 5)
    enddo
```

のように書き下してベクトル表記をなくすとループ内全てが SIMD 化される。

2) AからB

OpenMP によるスレッド並列は最外の k ループで実施するが、ループ長がスレッド数より短い場合はスレッド数が確保できないので手動で j, k ループを融合してループ長を稼いだ(二重ループの一重化)。

3) BからC

MFGS に関して

- 一時配列のスカラー化
- 0CL の挿入により依存関係を無視(計算は早くなるが収束性が悪化するため、トータル でみた場合にどちらが良いかは未確認)

を実施した。

4) CからD

flux 配列のインデックスを(i, j, k, :)から(:, i, j, k) へ変更した。

5) DからE

CとDを比較したところ対流項、粘性項のそれぞれで適したインデックスが異なることがわかった。そのためそれぞれに適したインデックスとして対流項は(i, j, k, :)、粘性項は

(:, i, j, k) を採用した。この理由であるが、粘性項は速度の差分を多く計算するため、物 理量(N=1~5、特に2,3,4)の再利用性が高く、そのためスカラー型のインデックスが適し ている。一方対流項は物理量の再利用性が多くはないのでベクトル型のインデックスが適 していると推測している。

6) EからF

flux 配列はローカルな配列で毎回初期化を行っており、その部分は自動並列に任せていた が、コンパイラが十分な最適化を実施できないことが判明したので OpenMP 化を実施した。 更に、3 次元空間の3 重ループに追加して物理量のループ (n=1, nPhys、計4 重ループ) が ある部分に関して物理量ループをアンロールした。変更前は

do n=1, nPhys

```
!$omp parallel do private(jk, i, j, k)
```

do jk=1, jkmax

```
k = (jk-1)/jmax+1
j = jk-jmax*(k-1)
do i=1, imax
q(i, j, k, n) = ...
enddo
```

enddo

!\$omp end parallel do

enddo

となっており、この場合 OpenMP のオーバーヘッドが nPhys 分発生するなどのデメリットが 考えられる。そのため

!\$omp parallel do private(jk, i, j, k)

do jk=1, jkmax
 k = (jk-1)/jmax+1
 j = jk-jmax*(k-1)
 do i=1, imax
 q(i, j, k, 1) = ...
 q(i, j, k, 2) = ...
 ...
enddo

enddo

!\$omp end parallel do

とすることでnのループに対しても最適化が適用され性能の向上が期待できる。

7) FからG

Bで行ったスレッド数確保のために j,k ループの手動融合を OpenMP の collapse を使う方式 に変更した。ちなみに両方式で性能面での変化は見られなかった。MPI を使ったデータ通信 部の前後処理部に関して自動並列が未対応な部分があり、その部分を OpenMP を用いたスレ ッド並列化を行った。F で実施した nPhys ループの書き下しは、汎用的なプログラムでは適 用が難しいので nPhys ループの位置を変更することでベストではないがベターな性能を得 ることができた。時間積分の MFGS (ガウスザイデル法の変形)をスレッド並列化する際に 用いている Block Red-Black 法のブロック分割に関してパラメトリックスタディを行い、 ブロック数の最適化を行った。図 6に 160³の例を示す。理由は不明だがブロック数がスレ ッド数の 2 倍の時に最速となった。

図 6 Block Red-Black のブロック分割による性能への影響

8) Ct, Dt, Et, Ft, Gt

高速化チューニングは主に flux 配列のインデックスに着目していたが、cell 配列のインデ ックスを(i, j, k, :)から(:, i, j, k)に変更したものを?t とした。これによりケースによ っては cell 配列と flux 配列のインデックスが異なる場合もある。

図 7にこれらの高速化チューニングの結果を示す。A の修正は SORA-MA にとっては高速 化になっているが SORA-PP に対しては逆に遅くなっていることがわかる。SORA-MA も SORA-PP も同じスカラーCPU であるがチューニングによっては正反対の結果になる場合があ ることがわかった。また、ある高速化チューニングによってある部分は高速になるが、他 の部分は逆に遅くなるという事が発生することもわかった。

図 8に示すように対流項と粘性項に関して比較を行うと、CからDでflux 配列のインデッ クスを変化させると、対流項は遅くなり、粘性項は速くなっていることがわかる。この結 果を受けてEでは対流項と粘性項のflux 配列のインデックスをそれぞれ最適なものとした。 この違いが発生した原因は前述したように、粘性項は速度の差分を多く計算するため物理 量(N=1~5、特に2,3,4)の再利用性が高くスカラー型のインデックスが適しているが、対 流項は物理量の再利用性が多くはないのでベクトル型のインデックスが適していると推測 している。

a) SORA-MA(FX100)

b) SORA-PP(Intel CPU)

図 7 高速化チューニング結果(ブロックサイズは 160³)

プログラム全体では時間積分(陰解法)、粘性項、対流項が大体3分割しており、その中 でもviscous_cfacev(粘性流束の計算のため各種物理量の微分を計算する部分)、MFGS(時 間積分)が比較的大きな割合を占めている。所謂ホットスポットが存在するようなプログ ラムとは異なるため、高速化チューニングではより多くの部分を対象とする必要がある。

2.1.6 おわりに

ステンシル系アプリケーションによる FX100 の性能評価、高速化チューニングについて 紹介した。本報告ではノード性能に注目して性能評価・高速化チューニングを実施したが、 今後は更なる高速化とノード間での性能評価・高速化チューニングを実施する予定である。

A. STREAM の性能評価

STREAM は主にメモリ性能を測定するベンチマークプログラムである。STREAM では幾つかの演算種類があるが、ここでは一般的な TRIAD を用いた。TRIAD は

do i=1,N

a(i) = b(i) + S * c(i)

enddo

となる。a, b, c は 1 次元配列、S はスカラーである。図 A-1 に TRIAD の測定結果を示す。

図 A-1 TRIAD によるメモリ性能(SORA-MA, PP)

SORA-MA (FX100)、SORA-PP (図中では E5-2643V2 と表記)ともにノード内の全コアを使用 している。SORA-MA、SORA-PP ともにループ長が 10⁶付近 (メモリ容量としては 24Mbyte 程度 でL2 キャッシュの容量程度)まではキャッシュによるアクセスであるが、それを超えると キャッシュが溢れ、10⁷では完全なメモリアクセスになっていると考えられる。SORA-MA の 場合、利用する配列(静的配列、ポインター、アロケータブル)によって性能が異なるこ とがわかる。今後改善されることが期待されるが、現状では静的配列が 302GB/s で一番性 能が高く、次にアロケータブル配列が 278GB/s、ポインターがかなり遅く 206GB/s となった (現状では、contiguos 属性を設定することで性能が改善される)。なお、この結果を得る ためにはラージページオプション(具体的には 1pgparm -1 demand)を指定する必要がある。 指定しないと動的配列(アロケータブル,ポインターともに)は 100GB/s 程度の性能とな る。

図 A-2 に SORA-MA のスレッドスケーラビリティを示す。静的配列のケースで、ループ長 は 10⁷で固定(キャッシュは溢れてメモリ性能を計測)してスレッドを 1 から 32 まで増や したときのメモリ性能の変化を示している。図よりスレッドの増加に伴って特異な傾向を 示していることがわかる。ここで、32 スレッド時のメモリ性能をコア数 32 で割った値が 9.375 GB/s である。1 スレッドから 8 スレッドまではスレッドの増加にともない線形に性 能が向上。8 スレッドから 16 スレッドまでは性能が頭打ちになっていることから。8 スレ ッド以下では 1 コア当たり最大で 2 コア分のメモリ性能を使っていると推測できる。JSS の 主計算機システムであった FX1 で同種の計測を行った場合、ノード内で 1 スレッド実行を 行うと、そのスレッドはノードの全メモリ性能を占有できることがわかっており、それと 似た状況である。16 スレッドを超えると再び線形(増加率は 1 コア当たりの性能である 9.375GB/s)に増加している。16 コアが 1CMG に所属しているため、16 スレッドを超えると 別の CMG へのアクセスが発生する(いわゆる NUMA 構成)ためと考えられる。実際、numactl -interleave=allを使うことでほぼ線形な挙動を得ることができる。

図 A-2 TRIAD(ループ長は10⁷)のスレッドスケーラビリティ (SORA-MA)

参考文献

 R. Takaki, K. Yamamoto, T. Yamane, S. Enomoto, and J. Mukai. The Development of the UPACS CFD Environment. Vol. 2858 of Lecture Notes in Computer Science, pp. 307-319. Springer, 2003.

SS研ポストペタアプリ性能WG

2

	Original	Tune1(flux等の配列を変更)
	type cellFaceType real(8) :: area,nt real(8), dimension(3) :: nv real(8), dimension(5) :: q_l,q_r real(8), dimension(5) :: flux end type type visCellFaceType real(8) :: area, mu real(8), dimension(3) :: nv, dTdx, u	<pre>type cellFaceType real(8), pointer, dimension(:,:,:) :: area,nt real(8),pointer, dimension(:,:,:,:) :: nv real(8), pointer, dimension(:,:,:,:) :: q_l,q_r real(8), pointer, dimension(:,:,:) :: flux end type type visCellFaceType real(8), pointer, dimension(:,:,:) :: area, mu real(8), pointer, dimension(:,:,:) :: area, mu real(8), pointer, dimension(:,:,:) :: nv, dTdx, u</pre>
	real(8), dimension(5) :: flux real(8), dimension(3,3) :: dudx end type	<pre>real(8), pointer, dimension(:,:,:,:) :: flux real(8), pointer, dimension(:,:,:,:) :: dudx end type</pre>
	type(*), pointer, dimension(:,:,:) :: cface	type(*) :: cface
	do n ; do k ; do j ; do i cface(i,j,k)%flux(n) enddo	do n ; do k ; do j ; do i cface%flux(i,j,k,n) enddo
AC	SS###:	

1		測結	l(経i	咼時間	[sec])	
			Original	Tune1	Tune1a	Tune1b	
	ALL		58.00	623.0	50.20	46.83	
		alloc (1)	6.760	5.791	5.763	5.253	
	Convert	pre	0.4674	0.4852	0.4854	0.4853	
	CONVECT (計法语)	muscl	3.913	1.978	1.984	2.034	
	(刈加坞)	flux	1.334 💈	a 1.041	1.052	1.037	
		post	4.418	0.6837		0.6823	
		alloc (1)	8.286	2)b 5.335	5.331	8.414	
	Viccous	pre	0.5870	1.720	1.720	0.5929	
	VISCOUS (半上小生 T百)	cfacev	8.741 🤅	3)a 27.80	18.01	9.007	
Ψ.		flux	1.482	564.5	1.314	1.482	
		post	4.421 🤇)a 0.6803	0.6798	4.422	
	MFGS(時間積分	•)	11.98	8.188	8.436	8.243	
	 alloc(配列のallocation)に時間がかかっている。 original→tune1で高速化 a. 対流項のmuscl, flux, post、粘性項のpost b. 粘性項のalloc(?) original→tune1で低速化 						
	a. 粘性 b. tune	頃のpre, ctacev, flu 1aでSIMD化を促進	x(cracevとfluxでは	SIVID化か減少)			
PAC	SS研ポストペタアプリ性能WG 5						

convect_muscl:

	Original 3.913[s]	Tune1 1.978[s]	Tune1a 1.984[s]
浮動小数点演算ピーク比	6.4		12.6
メモリ/L2/L1ビジー率 [%]	81/31/14	67/39/ <mark>27</mark>	64/30/ <mark>27</mark>
SIMD演算命令率 [%]	98.8	98.8	98.8
SIMDロード/ストア命令率 [%]	5.1/3.7	0/0	0/0
L1Dミス率 [%]	11.3		
L1Dミスdm/hwpf/swpf率 [%]	43.8/56.2/0	40.3/60.0/0	40.7/59.3/0
L2ミス率 [%]	8.96		
L2ミスdm率/pf率 [%]	24.4/75.6	15.3/84.7	15.3/84.7
ロード・ストア命令率 [%]	24.0	24.7	24.7
SIMD演算/演算命令率 [%]	34.0/0.42	25.5/0.32	25.5/0.32
SIMD積和演算/積和演算命令率 [%]	17.6/0.23	13.3/0.17	13.3/0.17
pf/分岐/その他命令率 [%]	0/0.19/23.6	0/3.26/32.8	0/3.26/32.8
SS研ポスト	·ペタアプリ性能WG		7

convect_flux:

	Original 1.334[s]	Tune1 1.041[s]	Tune1a 1.052[s]
浮動小数点演算ピーク比	16.9	21.7	21.5
メモリ/L2/L1ビジー率 [%]	90/26/14	65/40/20	63/35/19
SIMD演算命令率 [%]	99.2	99.2	99.2
SIMDロード/ストア命令率 [%]	0/0	0/0	0/0
L1Dミス率 [%]	6.34	6.53	6.72
L1Dミスdm/hwpf/swpf率 [%]	46.5/53.5/0	26.1/73.9/0	26.4/73.6/0
L2ミス率 [%]	6.36	6.02	6.02
L2ミスdm率/pf率 [%]	4.52/95.5	19.6/80.4	19.5/80.5
ロード・ストア命令率 [%]	19.0	18.3	18.3
SIMD演算/演算命令率 [%]	48.1/0.37	43.4/0.34	43.42/0.34
SIMD積和演算/積和演算命令率 [%]	27.8/0.27	25.1/0.25	25.1/0.25
pf/分岐/その他命令率 [%]	0/0.5/3.91	0/0.13/12.5	0/0.13/12.5

SS研ポストペタアプリ性能WG

convect_post:

*			
	Original 4.418[s]	Tune1 0.6837[s]	Tune1a 0.6832[s]
浮動小数点演算ピーク比	0.35	2.23	2.24
メモリ/L2/L1ビジー率 [%]	73/52/11	<mark>86/50/30</mark>	86/50/30
SIMD演算命令率 [%]	98.8	98.8	98.8
SIMDロード/ストア命令率 [%]	0/0	0/0	0/0
L1Dミス率 [%]	33.6	4.23	4.23
L1Dミスdm/hwpf/swpf率 [%]	90.6/9.38/0	1.13/98.9/0	1.13/98.9/0
L2ミス率 [%]	31.8	4.11	4.11
L2ミスdm率/pf率 [%]	57.6/42.4	7.86/92.1	7.84/92.2
ロード・ストア命令率 [%]	47.7	47.7	47.7
SIMD演算/演算命令率 [%]	4.67/0.06	4.68/0.06	4.68/0.06
SIMD積和演算/積和演算命令率 [%]	4.67/0.06	4.68/0.06	4.68/0.06
pf/分岐/その他命令率 [%]	0/1.2/41.6	0/1.2/41.6	0/1.2/41.6
SS研ポス	トペタアプリ性能WG		9

conve	ct-post
original (4.418 [s])	tune1(0.6837 [s])
do n=1,bdtv_nFlowVar (\$omp parallel do private(i,j,k,im,jm,km) do k=1,blk%kn do j=1,blk%jn do i=1,blk%in im = i-idelta(1); jm = j-idelta(2); km = k-idelta(3) blk%dq(i,j,k,n) = blk%dq(i,j,k,n) - blk%inv_vol(i,j,k) & * (cface(i,j,k)%flux(n) - cface(im,jm,km)%flux(n)) end do; enddo; enddo \$omp end parallel do end do	do n=1,bdtv_nFlowVar !\$omp parallel do private(i,j,im,jm,km) do k=1,blk%hn do j=1,blk%jn do i=1,blk%in im = i-idelta(1); jm = j-idelta(2); km = k-idelta(3) blk%dq(i,j,k,n) = blk%dq(i,j,k,n) - blk%inv_vol(i,j,k) & * (cface%flux(i,j,k,n) - cface%flux(im,jm,km,n)) end do; enddo !\$omp end parallel do end do
viscou	is-post
original (4.421 [s])	tune1(0.6803 [s])
do n=1,bdty_nFlowVar (\$omp parallel do private(i,j,k,im,jm,km) do k=1,blk%kn do j=1,blk%in im = i -idelta(1); jm = j -idelta(2); km = k -idelta(3) blk%dq(i,j,k,n) = blk%dq(i,j,k,n) - blk%inv_vol(i,j,k) & * (cface(i,j,k)%flux(n) - cface(im,jm,km)%flux(n)) end do; enddo (\$omp end parallel do end do	do n=1,bdtv_nFlowVar !\$omp parallel do private(i,j,k,im,jm,km) do k=1,blk%kn do j=1,blk%jn do i=1,blk%in im = i -idelta(1); jm = j -idelta(2); km = k -idelta(3) blk%dq(i,j,k,n) = blk%dq(i,j,k,n) - blk%inv_vol(i,j,k) & * (cface%flux(i,j,k,n) - cface%flux(im,jm,km,n)) end do; enddo !\$omp end parallel do end do

1	6	viscous_pre	
		Original(0.5870 [s])	Tune1(1.720 [s])
	31 32 1 p 33 2 p 34 3 p	!\$omp parallel do private(i,j,k) do k=-1,blk%kn do j=-1,blk%jn do i=-1,blk%in <<< Loop-information Start >>> <<< [OPTIMIZATION] <<< SIMD	<c> Loop-information Start >>> <<< [PARALLELIZATION] <<< Standard iteration count: 2 <<< [OPTIMIZATION] <<< SIMD <<< OTHER PREFETCH : 1 <<< OTHER XFILL : 1 </c>
	35 3 p	<pre><<< PREFETCH : 2 <<< cface: 2 <<< Loop-information End >>> v cface(i,j,k)%dudx(:,:) = 0.0 <<< Loop-information Start >>> <<< [OPTIMIZATION] <<< FULL UNROLLING <<< Loop-information Start >>> <<< [OPTIMIZATION]</pre>	<pre><<< Loop-information End >>> 37 pp v cface%dudx = 0.0 <!--<pre--><<< Loop-information Start >>> <<<< [PARALLELIZATION] </pre> <pre><<< Standard iteration count: 2 </pre> <pre><<< [OPTIMIZATION] </pre>
•	36 3 p	<pre><< Codp-information End >>> f</pre>	<pre><<< OTHER FRETCH . 2 <!--<--> <pre><<< OTHER XFILL : 2 </pre> <pre></pre> 38 pp v cface%dTdx = 0.0 ; cface%u = 0.0 </pre> <pre></pre> <pre></pre>
	37 3 p	<<< Loop-information End >>> m cface(i,j,k)%area = 0.0; <<< Loop-information Start >>> <<< [OPTIMIZATION] <<< SIMD <<< Loop-information End >>>	<cc [parallelization]<br=""><cc 2<br="" count:="" iteration="" standard=""><cc [optimization]<br=""><cc simd<br=""><cc 4<br="" :="" other="" prefetch=""><cc 4<="" :="" other="" th="" yell=""></cc></cc></cc></cc></cc></cc>
(PAC	38 3 p 39 3 p 40 2 p 41 1 p 42	end do end do end do send do end do send do send do send do	<pre>39 pp v cface%area = 0.0; cface%nv = 0.0 <<< Loop-information End >>> 39 v cface%area = 0.0; cface%nv = 0.0 <<< Loop-information Start >>> <<< [PARALLELIZATION] <<< Standard iteration count: 2 <<< [OPTIMIZATION] <<< SIMD <<< OTHER PREFETCH : 4 <<< OTHER XFILL : 4 13</pre>
			<pre><< Loop-information End >>> 40 pp v cface%mu = 0.0 ; cface%flux = 0.0</pre>

cor	nvect-pre
original(0.4674 [s])	tune1(0.4852 [s])
$\label{eq:some parallel do private(i,j,k) \\ do k=1,blk%kn \\ do j=1,blk%jn \\ do i=1,blk%in \\ cface(i,j,k)%area = 0.0 \\ cface(i,j,k)%nt = 0.0 \\ cface(i,j,k)%nt(:) = 0.0 \\ cface(i,j,k)%q_{-}(:) = 0.0 \\ cface(i,j,k)%q_{-}(:) = 0.0 \\ cface(i,j,k)%q_{-}(:) = 0.0 \\ cface(i,j,k)%lux(:) = 0.0 \\ cface(i,j,k)%lux(:) = 0.0 \\ cface(i,j,k)%lux(:) = 0.0 \\ enddo ; enddo ; enddo \\ \$omp end parallel do$	cface%area = 0.0 cface%nt = 0.0 cface%nv = 0.0 cface%q_I = 0.0 cface%q_r = 0.0 cface%flux = 0.0
vis	cous-pre
original(0.5870 [s])	tune1(1.720 [s])
<pre>\$omp parallel do private(i,j,k)</pre>	cface%dudx = 0.0 cface%dTdx = 0.0; cface%u = 0.0 cface%area = 0.0; cface%nv = 0.0 cface%mu = 0.0; cface%flux = 0.0 ※doループを使って明示的に書き 下しても性能は変わらず

viscous_cfacev:変数のスカラー化				
Tune1(27.8 [s])	Tune1a(18.01 [s])			
121 !\$comp parallel do private(i,j,k,) 122 123 1 p do k = isrt(3),iend(3) 124 2 p do j = isrt(2),iend(2) 125 3 p do i = isrt(1),iend(1) 126 3 1 = i + idelta(1); 128 3 ! xi derivative 130 3 149 3 ! xi derivative 130 3 128 3 ! xi derivative 130 3 131 3 p f u_0(1:3) = 132 3 p f u_1(1:3) = 133 3 134 3 p f u_0(1:3) = 135 3 p T_0 = 136 3 137 3 p f dudx1(1,:) = 138 3 p f dudx1(1,:) = 139 3 p f dudx1(2,:) = 139 3 p f dudx1(3,:) = 140 3 p f dtx1(1, :) =	139!\$omp parallel do private(i,j,k,) 148 1 p do k = isrt(3),iend(3) 149 2 p do j = isrt(2),iend(2) <<< << <<			

viscous_cfacev:

	Original 8.741[s]	Tune1 27.80[s]	Tune1a 18.01[s]
浮動小数点演算ピーク比	6.81	2.19	2.93
メモリ/L2/L1ビジー率 [%]	27/19/33	7/11/16	11/13/12
SIMD演算命令率 [%]	99.1	0	
SIMDロード/ストア命令率 [%]	0/0	0/0	0/0
L1Dミス率 [%]	1.97	3.94	6.97
L1Dミスdm/hwpf/swpf率 [%]	78.4/21.6/0	99.9/0.13/0	99.9/0.14/0
L2ミス率 [%]	1.01	0.68	1.66
L2ミスdm率/pf率 [%]	53.9/47.1	91.3/8.75	91.2/8.78
ロード・ストア命令率 [%]	48.7	39.1	36.8
SIMD演算/演算命令率 [%]	8.6/0.11	0/12.3	10.1/0.11
SIMD積和演算/積和演算命令率 [%]	14.9/0.11	0/16.9	15.9/0.11
pf/分岐/その他命令率 [%]	0/0.13/27.5	0/3.62/28.0	0/4.26/32.8
SS研ポン	ストペタアプリ性能WG		17

、viscous_flux:組み込み関数の手動展開 Tune1(564.5[s])

Tune1a(1.314[s])

259 !\$omp parallel do	442 !\$omp parallel do private(i,j,k,div_u,tau)
private(i,j,k,div_u,tau) $d_{0} = k = i_{0} t t (2) i_{0} t t (2)$	443 1 p $ao k = isrt(3), iend(3)$
260 I p $ao k = ISR(3), Iena(3)$	444 $2 p$ and $J = ISR(2), Iend(2)$
$261 2 p \qquad ao j = isrt(2), iena(2)$	
$262 - 3 - p = - 1 \sin(1), \tan(1)$	
[述屮哈]	<<< SUFTWARE PIPELINING
$977 - 2 - 5 = \frac{60}{100} \frac{1}{100} \frac{1}{100}$	445 2 n v de i = iort(1) iond(1)
277 3 p $1%$ IUX(I,J,K,T) =	445 3 p V $do T = ISI(T), Ierid(T)$
	[冷中败]
	[述中略]
Control Con	450 2
279 2 p f $f(f(y)/i)/2(4) =$	$459 \ 5$
$270 \ \text{S} \ \text{p} \ \text{I}$ 1% 1% 1% 1% 1% 1% 1% 1%	400 S μ V 1% IIUX(I,J,K, I) = 0.
	401 5 μ V 170110X(1, J, K, 2) =
	405 5 μ V 1%IIUX(I,J,K,S)
	405 5 μ V 170110X(1,j,K,4)
SUP I WARE PIPELINING	467 5 μ V Ι ⁷ οπαχ(Ι,J,K,S) –
	f(0) =
$279 \ 5 \ \mu \ 6v \ 1\% \ 1\% \ 1x(1,1,k,5) - \dots$	401 5 μ V 17011UX(1,J,K, 1) = -17041ed(1,J,K) 17011UX(1,J,K, 1) 492 2 p V $f_0/f_{\mu\nu}(i,j,k,2) = f_0/g_{reg}(i,j,k) * f_0/f_{\mu\nu}(i,j,k,2)$
ccclean information Charters	402 S μ V 1% int (i, j, k, 2) = -1% died(i, j, k) 1% int x(i, j, k, 2) 402 S μ V 1% int x(i, j, k, 2) = -1% died(i, j, k) 1% int x(i, j, k, 2)
	$483 3 p v \qquad 1\% \text{IIUX}(I,J,K,3) = -1\% \text{IIea}(I,J,K) ^{-1}\% \text{IIUX}(I,J,K,3)$
	484 3 p V 1% IIUX(I,J,K,4) = -1%area(I,J,K) 1%IIUX(I,J,K,4) 495 2 m V $f0/f$ Iuv(i i k 5) = $f0/area(i i k) * f0/f$ Iuv(i i k 5)
<<< SIMD	$485 3 p v \qquad 1\% \text{IIUX}(I,J,K,S) = -1\% \text{area}(I,J,K) = 1\% \text{IIUX}(I,J,K,S)$
<< Loop-Information End >>>	480 3 487 9 m v and da
283 3 p 6V f%flux(I,J,K,:) =	487 3 p V end do
284 3 205 0 a sud da	488 2 p end do
$285 \circ p$ end do	489 i p enu uo 10
$200 \times \mu$ end do	10

viscous_flux:

	Original 1.482[s]	Tune1 564.5[s]	Tune1a 1.314[s]
浮動小数点演算ピーク比	3.81	0.01	4.21
メモリ/L2/L1ビジー率 [%]	93/43/21	0/3/7	60/38/18
SIMD演算命令率 [%]	99.1	10.6	99.1
SIMDロード/ストア命令率 [%]	0/0	0/0	0/0
L1Dミス率 [%]	4.45	2.41	6.49
L1Dミスdm/hwpf/swpf率 [%]	49.3/50.7/0	97.2/1.71/1.07	44.0/56.0/0
L2ミス率 [%]	4.46	0.03	5.96
L2ミスdm率/pf率 [%]	16.0/84.1	92.2/7.83	35.2/64.8
ロード・ストア命令率 [%]	61.5	26.3	49.4
SIMD演算/演算命令率 [%]	19.9/0.19	0.02/0.10	20.2/0.21
SIMD積和演算/積和演算命令率 [%]	13.8/0.10	0/0.09	14.7/0.11
pf/分岐/その他命令率 [%]	0/0.92/3.65	0.04/22.7/50.8	0/0.53/14.9

SS研ポストペタアプリ性能WG

PAを取ると性能が変	化する

			tune1	tune1(PA)	tune1b	tune1b(PA)
	ALL		634.4	627.8	51.24	46.27
		alloc	5.999	6.128	6.121	5.241
	Convoct	pre	0.4854	0.4852	0.4879	0.4882
	CONVECT	muscl_flux	3.041	3.545	3.584	3.040
		post	0.6834	0.6778	0.6781	0.6842
		alloc	5.539	6.894	8.240	8.397
	Viscous	pre	1.720	1.719	0.5846	0.5863
	VISCOUS	cfacev_flux	596.5	596.7	9.650	10.14
		post	0.6793	0.6741	4.425	4.421
	MFGS		11.82	8.452	11.79	8.086
			古いve	rsionのデータ。	。最新version	でも一部発生
AC		/	SS研ポストペタ	アプリ性能WG		22

スレッド並列性能(強スケーリング)

	00,00,00					
	ουχουχου					
	スレッド数	1	2	4	8	16
	計算時間 [sec]	38.05	20.21	10.90	6.268	4.113
	速度比	1	1.88	3.49	6.07	9.25
	効率 [%]	-	94.1	87.3	75.9	57.8
	160x160x160					
	スレッド数	1	2	4	8	16
	計算時間 [sec]	364.4	190.1	107.7	69.40	57.78
	速度比	1	1.917	3.383	5.251	6.307
	効率 [%]	-	95.8	84.6	65.6	39.4
	320x320x320					
	スレッド数	1	2	4	8	16
	計算時間 [sec]	3413	1878	1113	676.1	533.0
	速度比	1	1.817	3.066	5.048	6.403
	効率 [%]	-	90.9	76.7	63.1	40.0
1	\backslash					

SS研ポストペタアプリ性能WG

23

25 / 253

a(i,j,k)%d(n) do-kjin !\$omp parallel do do k=1,kmax ; do j=1,jmax ; do i=1,imax do n=1,nmax im = i-idelta(1,dir) dq(i,j,k)%d(n) = dq(i,j,k)%d(n) + S(i,j,k)*(flux(i,j,k)%d(n)-flux(im,jm,km)%d(n)) enddo enddo ; enddo ; enddo !\$omp end parallel do	Δ	
a(i,j,k)%d(n) do-nkji do n=1,nmax !\$omp parallel do do k=1,kmax ; do j=1,jmax ; do i=1,imax im = i-idelta(1,dir) dq(i,j,k)%d(n) = dq(i,j,k)%d(n) + S(i,j,k)*(flux(i,j,k)%d(n)-flux(im,jm,km)%d(n)) enddo ; enddo ; enddo !\$omp end parallel do enddo	×	
$\begin{array}{l} a(i,j,k)\%d(n) \ do-kji:\\ \hline \\ \label{eq:source} \$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Δ	
SS研ポストペタアプリ性能WG	25	

a%d(i,j,k,n) do-nkji do n=1,nmax !\$omp parallel do do k=1 kmax : do i=1 imax : do i=1 imax	
im = i-idelta(1,dir) dq%d(i,j,k,n) = dq%d(i,j,k,n) + S(i,j,k)*(flux%d(i,j,k,n)-flux%d(im,jm,km,n)) enddo ; enddo ; enddo !\$omp end parallel do edndo	0
a%d(i,j,k,n) do-kji;	
<pre>!\$omp parallel do do k=1,kmax ; do j=1,jmax ; do i=1,imax im = i-idelta(1,dir) dq%d(i,j,k,:) = dq%d(i,j,k,:) + S(i,j,k)*(flux%d(i,j,k,:)-flux%d(im,jm,km,:)) enddo ; enddo ; enddo !\$omp end parallel do</pre>	0
a%d(i,j,k,n) do-kjin	
<pre>!\$omp parallel do do k=1,kmax ; do j=1,jmax ; do i=1,imax do n=1,nmax im = i-idelta(1,dir) dq%d(i,j,k,n) = dq%d(i,j,k,n) + S(i,j,k)*(flux%d(i,j,k,n)-flux%d(im,jm,km,n)) edond enddo ; enddo ; enddo !\$omp end parallel do</pre>	0
SS研ポストペタアプリ性能WG	26

<pre>im = i-idelta(1,dir) dq%d(n,i,j,k) = dq%d(n,i,j,k) + S(i,j,k)*(flux%d(n,i,j,k)-flux%d(n,im,jm,km)) enddo ; enddo ; enddo !\$omp end parallel do edndo</pre>	
a%d(n,i,j,k) do-kji; !\$omp parallel do do k=1,kmax ; do j=1,jmax ; do i=1,imax im = i-idelta(1,dir) dq%d(:,i,j,k) = dq%d(:,i,j,k) + S(i,j,k)*(flux%d(:,i,j,k)-flux%d(:,im,jm,km)) enddo ; enddo ; enddo !\$omp end parallel do	0
a%d(n,i,j,k) do-kjin !\$omp parallel do do k=1,kmax ; do j=1,jmax ; do i=1,imax do n=1,nmax im = i-idelta(1,dir) dq%d(n,i,j,k) = dq%d(n,i,j,k) + S(i,j,k)*(flux%d(n,i,j,k)-flux%d(n,im,jm,km)) edond enddo ; enddo ; enddo !\$omp end parallel do	0

