3.1 JAXA LBM コードの性能測定および改善

宇宙航空研究開発機構 石田 崇

富士通株式会社 三吉 郁夫

3.1.1 はじめに

航空宇宙分野,特に航空分野の数値流体力学(Computational Fluid Dynamics : CFD) においては、巡航状態の航空機翼面上で発生する衝撃波を精度良く捉えるために、 Navier-Stokes 方程式をベースとした計算アルゴリズムが発展してきた.非構造格子法、近 似リーマン解法,陰的時間積分,乱流モデルといった計算アルゴリズムの進展に加えて、 大型計算機の性能向上によって,航空機の巡航状態における空力性能を精度良くかつ実用 的な解析時間で予測できるようになってきたため、CFD は風洞試験と並んで航空機設計開発 には欠かせないツールとしての地位を確立している.近年では CFD を航空機のオフデザイ ン (バフェットなどの非定常状態)における空力性能予測に適用するニーズが増えてきて いる.しかしながら非定常状態に対する Navier-Stokes 方程式をベースとする計算アプロ ーチでは、計算精度・計算コスト・物理モデル依存の観点でまだ課題が多く、効率よく解 析することが難しい.このような状況を打破するアプローチとして、近年格子ボルツマン 法(Lattice Boltzmann Method : LBM)が注目されている.LBM では支配方程式がボルツマ ン輸送方程式であり、以下に示す特徴を持つ.

・支配方程式に非線形項が無い,

- ・支配方程式は非圧縮 Navier-Stokes 方程式に漸近するが, 音の伝搬を直接計算できる,
- ・衝突(Collision)と並進(Stream)の2ステップで時間発展する,
- ・時間積分はCFL数が1に固定された陽解法である,
- ・Navier-Stokes 方程式に比べて計算コストが小さい,
- ・格子点毎に依存関係が無いので容易に並列化が出来る.

JAXA では航空機の離着陸形態における空力騒音問題や低速バフェットの解析に向けた大 規模非定常流体解析コードとして LBM コードを開発・整備しており、本稿ではメニーコア WG 内で行った FX100 を用いたコードの性能評価および改善について報告する.

3.1.2 JAXA LBM コードの概要

JAXA LBM コードでは、直交格子法の一つである Building-Cube Method (BCM)をフレーム ワークとして採用し、LBM と組み合わせて大規模非定常解析コードとして整備している.以 降では、LBM および BCM の概要について説明する.

3.1.2.1 LBM のアルゴリズム概要

LBM における支配方程式は,

$$\frac{D}{Dt}f(\mathbf{x}, \mathbf{e}, t) = \left[\frac{\partial}{\partial t} + \mathbf{e} \cdot \boldsymbol{\nabla}\right]f = \boldsymbol{\Omega}$$
(1)

であり、格子上で離散化すると以下の離散式が得られる.

$$f_i(\mathbf{x} + \mathbf{e}_i \times dt, t + dt) = f_i(\mathbf{x}, t) + dt \times \mathbf{\Omega}_i, \qquad i = 1, \cdots, b$$
(2)

ここでfは状態分布関数, xは位置ベクトル, eは粒子の速度, Ω は衝突項, bは粒子の自由度の数であり, Ω には以下に示す BGK モデルを用いた Single Relaxation Time (SRT)を用いるのが一般的である.

$$\mathbf{\Omega}_{i}^{BGK} = -\frac{1}{\tau} \Big(f_{i}(\mathbf{x}, t) - f_{i}^{eq}(\mathbf{x}, t) \Big)$$
(3)

ここで f^{eq} は平衡状態分布関数, τ は緩和係数である.時間積分は衝突(Collision)と並進 (Stream)の2ステップからなり、衝突は(4)、並進は(5)のようにそれぞれ記述でき る.

$$f_i^*(\mathbf{x},t) = f_i(\mathbf{x},t) + \mathbf{\Omega}_i, \qquad i = 1, \cdots, b$$
(4)

$$f_i(\mathbf{x} + \mathbf{e}_i \times dt, t + dt) = f_i^*(\mathbf{x}, t), \qquad i = 1, \cdots, b$$
(5)

SRT の特徴は分散誤差が少ない点であるが,航空機の空力性能予測で対象とするような高 Re 数(低粘性)の流れでは計算が非常に不安定ですぐに破綻してしまう.SRT では全ての 状態分布関数を同一の緩和係数で緩和するが,この過程に計算を不安定化させる高次のモ ードをダンプする仕組みが無いためである.この問題を解決するために様々な衝突項モデ ルが世界的に研究されており,JAXA LBM コードでは Dr. Mertin Geier によって提案された Cascaded LBM を衝突項に実装している.Cascaded LBM は状態分布関数を(6)に示す central moment に変換し, central moment space で異なる緩和係数で緩和(特に計算を不安定化さ せる高次のモーメントを dissipative な緩和係数で緩和) させることにより高 Re 数流れで も安定に計算することが出来る.

$$\rho \widetilde{\mathbf{M}}_{p,q,r} = \sum_{i} (e_{ix} - u_x)^p \cdot (e_{iy} - u_y)^q \cdot (e_{iz} - u_z)^r \cdot f_i$$

$$= \mathbf{C} \cdot \mathbf{f}$$
(6)

状態分布関数から central moment への変換行列Cは, C = C(u)とローカルな速度の関数に なっているため,格子点毎に計算しなくてはならない.また, central moment space で緩 和した後には状態分布関数に逆変換しなければならず,これらの行列演算にかかる計算負 荷は大きい.参考に2次元9速度 (D2Q9) モデルにおける変換行列Cおよびその逆行列であ る C^{-1} を(7)および(8)にそれぞれ示す.

3.1.2.2 Building-Cube Method (BCM)

Building-Cube Method では、計算領域を立方体領域(Cube)に分割し、各 Cube 内に等間 隔直交格子(Cell)を生成して解析するフレームワークである.流体解析のプログラム部 分は single block 用に作成し、Cube ループで全体の計算を回す間に適宜 Cube 間の情報交 換を実施する.

図 6 Cube (左図) と Cell (右図)

(1	1	1	1	1	1	1	1	1	
- u	1 - u	- u	-1 - u	- u	1 – u	-1 - u	-1 - u	1 - u	
- V	- V	1 - v	- v	-1 - v	1 - v	1 - v	-1 - v	-1 - v	
$u^{2} - v^{2}$	$(1 - u)^2 - v^2$	$u^{2} - (1 - v)^{2}$	$(-1 - u)^2 - v^2$	$u^{2} - (-1 - v)^{2}$	$(1 - u)^2 - (1 - v)^2$	$(-1 - u)^2 - (1 - v)^2$	$(-1 - u)^2 - (-1 - v)^2$	$(1 - u)^2 - (-1 - v)^2$	
$u^2 + v^2$	$(1 - u)^{2} + v^{2}$	$u^{2} + (1 - v)^{2}$	$(-1 - u)^{2} + v^{2}$	u^{2} + $(-1 - v)^{2}$	$(1 - u)^{2} + (1 - v)^{2}$	$(-1-u)^{2} + (1-v)^{2}$	$(-1 - u)^{2} + (-1 - v)^{2}$	$(1 - u)^{2} + (-1 - v)^{2}$	(7)
u v	(-1 + u) v	-u (1 - v)	(1 + u) v	-u (-1 - v)	(1 - u) (1 - v)	(-1 - u) (1 - v)	(-1 - u) (-1 - v)	(1 - u) (-1 - v)	
- u v ²	$(1 - u) v^2$	$-u (1 - v)^2$	$(-1 - u) v^2$	$-u (-1 - v)^2$	$(1 - u) (1 - v)^2$	$(-1-u)(1-v)^{2}$	$(-1 - u) (-1 - v)^2$	$(1 - u) (-1 - v)^2$	
- u ² v	- (1 - u) ² v	$u^2 (1 - v)$	- (-1 - u) ² v	$u^{2}(-1-v)$	$(1 - u)^2 (1 - v)$	$(-1 - u)^{2} (1 - v)$	$(-1 - u)^{2} (-1 - v)$	$(1 - u)^2 (-1 - v)$	
u ² v ²	$(1 - u)^2 v^2$	$u^{2} (1 - v)^{2}$	$(-1 - u)^2 v^2$	$u^{2}(-1-v)^{2}$	$(1 - u)^2 (1 - v)^2$	$(-1-u)^2 (1-v)^2$	$(-1 - u)^2 (-1 - v)^2$	$(1-u)^2 (-1-v)^2$	

$(-1 + u^2) (-1 + v^2)$	$2 u \left(-1 + v^2\right)$	$2\left(-1+u^{2}\right)v$	$\frac{1}{2}\left(-u^2+v^2\right)$	$\frac{1}{2}(-2 + u^2 + v^2)$	4 u v	2 u	2 v	1)	
$-\frac{1}{2}u(1+u)(-1+v^2)$	$-\frac{1}{2}(1+2u)(-1+v^2)$	-u (1 + u) v	$\frac{1}{4}(1 + u + u^2 - v^2)$	$\frac{1}{4}(1-u(1+u)-v^2)$	-(1 + 2 u) v	$-\frac{1}{2} - u$	- V	$-\frac{1}{2}$	
$-\frac{1}{2}(-1+u^2)v(1+v)$	-u v (1 + v)	$-\frac{1}{2}(-1+u^2)(1+2v)$	$\frac{1}{4} \left(-1 + u^2 - v \ (1 + v) \right)$	$\frac{1}{4} \left(1 - u^2 - v (1 + v) \right)$	-u (1 + 2 v)	- u	$-\frac{1}{2} - V$	$-\frac{1}{2}$	
$-\frac{1}{2}(-1+u) u(-1+v^2)$	$-\frac{1}{2} \ \left(-1+2u\right) \ \left(-1+v^2\right)$	- (-1 + u) u v	$\frac{1}{4} \left(1 + (-1 + u) \ u - v^2 \right)$	$\frac{1}{4} \left(1 + u - u^2 - v^2 \right)$	v – 2 u v	$\frac{1}{2} - u$	- v	$-\frac{1}{2}$	
$-\frac{1}{2}(-1+u^2)(-1+v)v$	-u (-1 + v) v	$-\frac{1}{2}\left(-1+u^2\right)\left(-1+2v\right)$	$\frac{1}{4} \left(-1 + u^2 + v - v^2 \right)$	$\frac{1}{4} \left(1 - u^2 + v - v^2 \right)$	u – 2 u v	- u	$\frac{1}{2} - V$	$-\frac{1}{2}$	(8)
$\frac{1}{4}u(1+u)v(1+v)$	$\frac{1}{4}$ (1 + 2 u) v (1 + v)	$\frac{1}{4} \ u \ (1+u) \ (1+2 \ v)$	$\frac{1}{8} \left(- u \ (1 + u) \ + v + v^2 \right)$	$\frac{1}{8} \left(u + u^2 + v + v^2 \right)$	$\frac{1}{4} \ (1+2 \ u) \ (1+2 \ v)$	$\frac{1}{4} (1+2 u)$	$\frac{1}{4}$ (1 + 2 v)	1 4	
$\frac{1}{4}(-1+u) u v (1+v)$	$\frac{1}{4}$ (-1 + 2 u) v (1 + v)	$\frac{1}{4}$ (-1 + u) u (1 + 2 v)	$\frac{1}{8}\left(u-u^2+v+v^2\right)$	$\frac{1}{8} \left(\left(-1 + u \right) u + v + v^2 \right)$	$\frac{1}{4}$ (-1 + 2 u) (1 + 2 v)	$\frac{1}{4} \left(-1+2 \; u \right)$	$\frac{1}{4}$ (1 + 2 v)	$\frac{1}{4}$	
$\frac{1}{4}(-1+u) u (-1+v) v$	$\frac{1}{4}(-1+2u)(-1+v)v$	$\frac{1}{4}$ (-1 + u) u (-1 + 2 v)	$-\frac{1}{8}(u-v)(-1+u+v)$	$\frac{1}{8}$ ((-1+u) u + (-1+v) v)	$\frac{1}{4} \ (-1 + 2 \ u) \ (-1 + 2 \ v)$	$\frac{1}{4}$ (-1 + 2 u)	$\frac{1}{4}(-1+2v)$	$\frac{1}{4}$	
$\left(\begin{array}{c} \frac{1}{4} u (1+u) (-1+v) v \end{array}\right)$	$\frac{1}{4}$ (1 + 2 u) (-1 + v) v	$\frac{1}{4} u (1 + u) (-1 + 2 v)$	$-\frac{1}{8}(1+u-v)(u+v)$	$\frac{1}{8} \left(u + u^2 + (-1 + v) v \right)$	$\frac{1}{4}$ (1 + 2 u) (-1 + 2 v)	$\frac{1}{4}$ (1 + 2 u)	$\frac{1}{4}(-1+2v)$	$\frac{1}{4}$	

3.1.3 コード改善

本章では、FX100(JSS2 MA システム)を用いたコード改善による性能評価について報告 する.性能評価には C++で記述された 2 次元 9 速度 (D2Q9) モデルのプログラムを用い、Lid Driven Cavity を計算対象として格子点数128×128の single block の直交格子を用いた. 時間積分は 1000 ステップ分実施して性能を評価した.なお、計算は 1core で実施し、コン パイルには以下オプションを使用した.

コンパイルオプション:-Kfast -Nlst=t -std=c++11

以降で出てくるサンプルコード内の変数を以下に定義する.

- Q: :自由度の数(2次元:Q=9,3次元:Q=27)
- ftmp : 衝突後の状態分布関数
- rho :密度
- CM : central moment $\widetilde{\mathbf{M}}$
- omg :モード毎の緩和係数
- M : 変換行列**C**
- Minv : 逆変換行列**C**⁻¹

3.1.3.1 CollisionのSIMD化

central moment を central moment space でモード毎に緩和させた後に,元の状態分布関数に逆変換する操作において,衝突後の分布関数を格納する配列:ftmp の定義にダブルポインタを用いていたため,コンパイル最適化が十分に効かなかった.そこで SIMD 化を促進するため,以下の変更を実施した.その結果,表 に示す通り 1.74 倍程度高速化することが出来た.

変更前

for (int $n = 0$; $n < Q$; ++ n) {
ftmp[I][n] = 0;
for (int $m = 0; m < Q; ++m)$ {
ftmp[I][n] += rho[I] * (Minv[m][n] * (CM[m] * (1 - omg[m]) + CMeq[m] * omg[m]));
}
}

変更後

T ftmp_[Q];
for (int $n = 0$; $n < Q$; ++ n) {
$ftmp_[n] = 0;$
}
for (int $m = 0; m < Q; ++m)$ {
for (int $n = 0; n < Q; ++n)$ {
$ftmp_[n] += rho[I] * (Minv[m][n] * (CM[m] * (1 - omg[m]) + CMeq[m] * omg[m]));$
}
}
for (int $n = 0$; $n < Q$; ++ n) {
ftmp[I][n] = ftmp[n];
}

÷.	1
衣	1

	変更前	変更後
Elapsed(s)	29.0696	16.7274
MFLOPS	588. 2525	895. 9001
MFLOPS/PEAK(%)	1.6655	2.5452

central moment を求める行列は速度の関数になっており,格子点毎に実施する変換行列 の定義およびそれらの演算はコストが大きい.そこで行列演算を書き下して性能が変化す るか調査した.その結果,表 に示す通り更に1.13倍程度高速化することが出来,2次元9 速度モデルでは行列演算の書き下しにある程度効果があることが分かった.

変更前

//! Transform matrix from f to Central Moment
$TM[Q][Q] = \{$
1, 1, 1, 1, 1, 1, 1, 1, 1,
-u, 1 - u,-u,-1 - u, -u, 1 - u, -1 - u, -1 - u, 1 - u,
-v, -v, 1 - v, -v, -1 - v, 1 - v, 1 - v, -1 - v, -1 - v,
u*v, -v * (1 - u),-u * (1 - v), -v * (-1 - u),-u * (-1 - v),(1 - u)*(1 - v),(-1 - u)*(1 - v),(-1 - u)*(-1 - v),(1 - u)*(-1 - v),
u2 - v2, ua - v2,u2 - va,ub - v2,u2 - vb,ua - va, ub - va,ub - vb, ua - vb,
u2 + v2, ua + v2,u2 + va,ub + v2,u2 + vb,ua + va, ub + va,ub + vb, ua + vb,
-u * v2, v2*(1 - u),-u * va,v2*(-1 - u),-u * vb,(1 - u)*va, (-1 - u)*va,(-1 - u)*vb, (1 - u)*vb,
-u2 * v, -v * ua,u2*(1 - v),-v * ub,u2*(-1 - v),ua*(1 - v), ub*(1 - v),ub*(-1 - v), ua*(-1 - v),
u2*v2, v2*ua,u2*va,v2*ub,u2*vb,ua*va, ub*va,ub*vb, ua*vb
};
//! Calculation of Central Moment
for $(int l = 0; l < Q; ++l)$ {
CM[1] = 0;
for (int $n = 0; n < Q; ++n$) {
CM[1] += M[1][n] * f[1][n];
CM[1] = CM[1] / ro;

変更後

$CM[0] = f_{0} + f_{1} + f_{2} + f_{3} + f_{4} + f_{5} + f_{6} + f_{7} + f_{8};$
$CM[1] = (-u)*f_{-}[0] + (1 - u)*f_{-}[1] + (-u)*f_{-}[2] + (-1 - u)*f_{-}[3] + (-u)*f_{-}[4] + (-u)*f_{-}[4]$
$(1 - u) * f_{-}[5] + (-1 - u) * f_{-}[6] + (-1 - u) * f_{-}[7] + (1 - u) * f_{-}[8];$
$CM[2] = (-v)*f_{-}[0] + (-v)*f_{-}[1] + (1 - v)*f_{-}[2] + (-v)*f_{-}[3] + (-1 - v)*f_{-}[4] + (-1 - v)*$
$(1 - v) * f_{-}[5] + (1 - v) * f_{-}[6] + (-1 - v) * f_{-}[7] + (-1 - v) * f_{-}[8];$
$CM[3] = (u * v)*f_{0}[0] + (-v * (1 - u))*f_{1}[1] + (-u * (1 - v))*f_{2}[2] + (-v * (-1 - u))*f_{3}[3] + (-u * (-1 - v))*f_{4}[4] + (-u * (-1 - v))*f_{1}[4] + (-u * (-1 - v))*f_{1}$
$((1 - u)*(1 - v))*f_{-}[5] + ((-1 - u)*(1 - v))*f_{-}[6] + ((-1 - u)*(-1 - v))*f_{-}[7] + ((1 - u)*(-1 - v))*f_{-}[8];$
$CM[4] = (u2 \cdot v2)*f_{0} + (ua \cdot v2)*f_{1} + (u2 \cdot va)*f_{2} + (ub \cdot v2)*f_{3} + (u2 \cdot vb)*f_{1} + (u$
$(ua - va)*f_{5} + (ub - va)*f_{6} + (ub - vb)*f_{7} + (ua - vb)*f_{8};$
$CM[5] = (u2 + v2)*f_{0} + (ua + v2)*f_{1} + (u2 + va)*f_{2} + (ub + v2)*f_{3} + (u2 + vb)*f_{4} + (u2 + vb)*f_{1} + (u$
$(ua + va)*f_{5} + (ub + va)*f_{6} + (ub + vb)*f_{7} + (ua + vb)*f_{8};$
$CM[6] = (-u * v2)*f_{0} + (v2*(1 - u))*f_{1} + (-u * va)*f_{2} + (v2*(-1 - u))*f_{3} + (-u * vb)*f_{4} + (-u * vb)*f_{1} + (-u * vb)*f_{$
$((1 - u)*va)*f_{5} + ((-1 - u)*va)*f_{6} + ((-1 - u)*vb)*f_{7} + ((1 - u)*vb)*f_{8};$
$CM[7] = (-u2*v)*f_{0} + (-v*ua)*f_{1} + (u2*(1-v))*f_{2} + (-v*ub)*f_{1} + (u2*(-1-v))*f_{2} + (-v*ub)*f_{1} + (-v*ub)*f_{1}$
$(ua^{(1 - v))}f_{5} + (ub^{(1 - v))}f_{6} + (ub^{(-1 - v))}f_{7} + (ua^{(-1 - v))}f_{5} = 0;$
$CM[8] = (u2 * v2)*f_{0} + (v2*ua)*f_{1} + (u2*va)*f_{2} + (v2*ub)*f_{3} + (u2*vb)*f_{1} + (u$
$(ua*va)*f_{[5]} + (ub*va)*f_{[6]} + (ub*vb)*f_{[7]} + (ua*vb)*f_{[8]};$

ŧ	0
衣	4

	変更前	変更後
Elapsed(s)	16.7274	14.7741
MFLOPS	895.9001	849. 2416
MFLOPS/PEAK(%)	2.5452	2. 4126

3.1.3.3 状態分布関数 f = C⁻¹· Mを求める行列演算の書き下し

2.6.3.2 で行列演算の書き下しによる効果が得られたため, central moment から状態分 布関数を求める逆変換の行列演算も書き下して性能が変化するか調査した. その結果,表 に示す通り 1.64 倍程度高速化することが出来,2 次元 9 速度モデルにおける逆行列演算に 関する書き下しには大きな効果があることが分かった.

変更前

T ftmp_[Q];
for (int $n = 0; n < Q; ++n$) {
$ftmp_[n] = 0;$
}
for (int $m = 0; m < Q; ++m)$ {
for (int $n = 0; n < Q; ++n$) {
$ftmp_[n] += rho[I] * (MiC2[m][n] * (CM[m] * (1 - omg[m]) + CMeq[m] * omg[m]));$
}
}
for $(int n = 0; n < Q; ++n)$ {
ftmp[I][n] = ftmp[n];

変更後

T CMpost[Q]; for (int n = 0; n < Q; ++n) { CMpost[n] = ro * (CM[n] * (1 - omg[n]) + CMeq[n] * omg[n]);ftmp[I][0] = (u2 - 1) * (v2 - 1) * CMpost[0] + 0 * CMpost[1] + 0 * CMpost[2] + 4 * u * v * CMpost[3] + 0.5 * (v2 - u2) + 0.5 * (v2 - u2)* CMpost[4] + 0.5 * (u2 + v2 - 2) * CMpost[5] + 2.*u * CMpost[6] + 2.*v * CMpost[7] + 1 * CMpost[8]; ftmp[I][1] = -0.5 * u * (u + 1) * (v2 - 1) * CMpost[0] + 0.5 * CMpost[1] + 0 * CMpost[2] + -(2 * u + 1) * v * CMpost[1] + 0 * CMpost[1] + 0 * CMpost[1] + 0 * CMpost[1] + 0 * CMpost[2] + -(2 * u + 1) * v * CMpost[1] + 0 * CMpoCMpost[3] + 0.25 * (u2 + u - v2 + 1) * CMpost[4] + 0.25 * (-u2 - u - v2 + 1) * CMpost[5] + -(u + 0.5) * CMpost[6] + -(u-v * CMpost[7] + -0.5 * CMpost[8]; ftmp[I][2] = -0.5 * v * (v + 1) * (u2 - 1) * CMpost[0] + 0 * CMpost[1] + 0.5 * CMpost[2] + -u * (2 * v + 1) * (u2 - 1) * CMpost[0] + 0 * CMpost[1] + 0.5 * CMpost[2] + -u * (2 * v + 1) * (u2 - 1) * CMpost[0] + 0 * CMpost[1] + 0.5 * CMpost[2] + -u * (2 * v + 1) * (u2 - 1) * CMpost[0] + 0 * CMpost[1] + 0.5 * CMpost[2] + -u * (2 * v + 1) * (u2 - 1) * CMpost[0] + 0 * CMpost[1] + 0.5 * CMpost[2] + -u * (2 * v + 1) * (u2 - 1) * (u2 - 1) * CMpost[0] + 0 * CMpost[1] + 0.5 * CMpost[2] + -u * (2 * v + 1) * (u2 - 1) * (u2CMpost[3] + 0.25 * (u2 - v2 - v - 1) * CMpost[4] + 0.25 * (-u2 - v2 - v + 1) * CMpost[5] + -u * CMpost[6] + -(v + 0.5) +* CMpost[7] + -0.5 * CMpost[8]; ftmp[I][3] = -0.5 * u * (u - 1) * (v2 - 1) * CMpost[0] + -0.5 * CMpost[1] + 0 * CMpost[2] + v * (1 - 2 * u) * CMpost[3]+ 0.25 * (u2 - u - v2 + 1) * CMpost[4] + 0.25 * (-u2 + u - v2 + 1) * CMpost[5] + (0.5 - u) * CMpost[6] + -v * (-u2 + u - v2 + 1) * CMpost[5] + (0.5 - u) * CMpost[6] + -v * (-u2 + u - v2 + 1) * CMpost[5] + (0.5 - u) * CMpost[6] + -v * (-u2 + u - v2 + 1) * CMpost[5] + (0.5 - u) * CMpost[6] + -v * (-u2 + u - v2 + 1) * CMpost[5] + (0.5 - u) * CMpost[6] + -v * (-u2 + u - v2 + 1) * CMpost[5] + (0.5 - u) * CMpost[6] + -v * (-u2 + u - v2 + 1) * CMpost[5] + (0.5 - u) * CMpost[6] + -v * (-u2 + u - v2 + 1) * CMpost[5] + (-u2 + u - v2 + u - v2 + 1) * CMpost[5] + (-u2 + u - v2 + u - v2 + u - v2 + u - v2 + u - u2 + u -CMpost[7] + -0.5 * CMpost[8]; ftmp[I][4] = -0.5 * v * (v - 1) * (u2 - 1) * CMpost[0] + 0 * CMpost[1] + -0.5 * CMpost[2] + u * (1 - 2 * v) * CMpost[3]CMpost[7] + -0.5 * CMpost[8]; ftmp[I][5] = 0.25 * u * v * (u + 1) * (v + 1) * CMpost[0] + 0 * CMpost[1] + 0 * CMpost[2] + 0.25 * (2 * u + 1) * (2 * v + 1) *+ 1) * CMpost[3] + 0.125 * (-u2 - u + v2 + v) * CMpost[4] + 0.125 * (u2 + u + v2 + v) * CMpost[5] + 0.25 * (2 * u + v2 + v) * CMpost[5] + 0.25 *1)* CMpost[6] + 0.25 * (2 * v + 1) * CMpost[7] + 0.25 * CMpost[8]; ftmp[I][6] = 0.25 * u * v * (u - 1) * (v + 1) * CMpost[0] + 0 * CMpost[1] + 0 * CMpost[2] + 0.25 * (2 * u - 1) * (2 * v + 1) * (1) * CMpost[3] + 0.125 * (-u2 + u + v2 + v) * CMpost[4] + 0.125 * (u2 - u + v2 + v) * CMpost[5] + 0.25 * (2 * u - 1) * CMpost[5] +CMpost[6] + 0.25 * (2 * v + 1) * CMpost[7] + 0.25 * CMpost[8]; ftmp[I][7] = 0.25 * u * v * (u - 1) * (v - 1) * CMpost[0] + 0 * CMpost[1] + 0 * CMpost[2] + 0.25 * (2 * u - 1) * (2 * v - 1) * (1) * CMpost[3] + 0.125 * (-u2 + u + (v - 1) * v) * CMpost[4] + 0.125 * (u2 - u + (v - 1) * v) * CMpost[5] + 0.25 * (2 * u - 1) * CMpost[6] + 0.25 * (2 * v - 1) * CMpost[7] + 0.25 * CMpost[8]; ftmp[I][8] = 0.25 * u * v * (u + 1) * (v - 1) * CMpost[0] + 0 * CMpost[1] + 0 * CMpost[2] + 0.25 * (2 * u + 1) * (2 * v + 1) *- 1) * CMpost[3] + 0.125 * (-u2 - u + (v - 1) * v) * CMpost[4] + 0.125 * (u2 + u + (v - 1) * v) * CMpost[5] + 0.25 * (2 * u + 1) * CMpost[6] + 0.25 * (2 * v - 1) * CMpost[7] + 0.25 * CMpost[8];

ŧ.	0
衣	J

	変更前	変更後
Elapsed(s)	14.7741	9.0030
MFLOPS	849. 2416	1457.6530
MFLOPS/PEAK(%)	2. 4126	4. 1411

3.1.3.4 Stream の方針変更

Stream では【自分⇒周囲】の順番で状態分布関数をコピーする操作をしていたが、キャ ッシュの効率を考慮して【周囲⇒自分】の順番に修正して性能が変化するか調査した. そ の結果,表 に示す通り更に 1.3 倍程度高速化することが出来た.

変更前

for $(int I = 0; I < size; ++1)$ {
:: -1 [0] - 1 0 NDIM[0]:
IJK[0] = 1 % INDIM[0];
iik[1] = I / NDIM[0];
for $(int] = 0;] < 0; ++] $
$\ln dx[0] = ijk[0] - c[1][0];$
indy[1] = iik[1] - c[1][1]:
$\lim_{n \to \infty} \left[\frac{1}{n} \right] = \left[\frac{1}{n} \left[\frac{1}{n} \right] = \left[\frac{1}$
$\inf dx[0] = (\inf dx[0] \ge 0) ? (\inf dx[0] = \inf dx[0]) : (\inf dx[0] = 0);$
indy[1] = (indy[1] >= 0) ? (indy[1] = indy[1]) : (indy[1] = 0)
$\max\{i\} = (\max\{i\} > 0): (\max\{i\} = \max\{i\}) : (\max\{i\} = \max\{i\}) : (\max\{i\} = 0))$
$\inf_{x \in [0]} \inf_{x \in [0]} \inf_{x$
indy[1] = (indy[1] < NDIM[1]) ? (indy[1] = indy[1]) : (indy[1] = NDIM[1] = 1)
$\max[1] - (\max[1] < \operatorname{NDIM}[1]) : (\max[1] - \max[1]) \cdot (\max[1] - \operatorname{NDIM}[1] = 1),$
J = indx[0] + NDIM[0] * indx[1];
$f_{low} = l_{model} [\mathbf{I}] := l_{model} (\mathbf{X} + l_{model}) [\mathbf{I}] := l_{model} (\mathbf{Y})$
mask[J].1sinner(), mask[J].1sinner(),
f[J][1] = ftmp[I][1] * (flag) + f[J][1] * (1 - flag);

変更後

for $(int I = 0; I < size; ++I) $ {
ijk[0] = I % NDIM[0];
ijk[1] = I / NDIM[0];
for $(int l = 0; l < Q; ++l)$ {
indx[0] = ijk[0] - c[1][0];
indx[1] = ijk[1] - c[l][1];
$indx[0] = (indx[0] \ge 0) ? (indx[0] = indx[0]) : (indx[0] = 0);$
$indx[1] = (indx[1] \ge 0) ? (indx[1] = indx[1]) : (indx[1] = 0);$
indx[0] = (indx[0] < NDIM[0]) ? (indx[0] = indx[0]) : (indx[0] = NDIM[0] - 1);
indx[1] = (indx[1] < NDIM[1]) ? (indx[1] = indx[1]) : (indx[1] = NDIM[1] - 1);
J = indx[0] + NDIM[0] * indx[1];
$f_{1} = ftmp[J][1];$
}
$f[I][0] = f_{0};$
$f[I][1] = f_{1}[1];$
$f[I][2] = f_{2};$
$f[I][3] = f_[3];$
$f[I][4] = f_[4];$
$f[I][5] = f_{5};$
$f[I][6] = f_[6];$
$f[I][7] = f_{[7]};$
$f[I][8] = f_[8];$
}

圭	1
X	-4

	変更前	変更後
Elapsed(s)	9.0030	6. 9164
MFLOPS	1457.6530	1897. 4156
MFLOPS/PEAK(%)	4. 1411	5. 3904

3.1.3.5 コード改善後の性能評価

3.1.3.2³.1.3.4 の改善によって,検証ケース(格子点数128×128)では最終的におよ そ 4.2 倍高速化することが出来た.そこで格子点数を変化させて SRT とコード改善した Cascaded LBM の解析時間の比較を行い,その結果を図 7 に示す.コード改善によりコスト の高い Cascaded LBM が SRT と比較して,元々5.5 倍であった解析コストが高々1.25 倍程度 にまで削減出来ていることが分かった.また,解析コスト増分は格子点数によらずほぼー 定であった.コード改善無しの 3 次元コードの場合, Cascaded LBM の解析コストは SRT の 約 13 倍程度となっており(図 8),今後は 2 次元におけるコード改善の結果を反映して 3 次元における性能調査を実施する予定である.

図 7 SRT と Cascaded LBM の解析時間の比較(2次元)

図 8 SRT と Cascaded LBM の解析時間の比較(3次元)

3.1.4 スレッド並列性能

FX100 1node を用いて行ったスレッド並列性能調査の結果について以下に報告する. 性能 評価には C++で記述された 3 次元 27 速度(D3Q27)モデルのプログラムを用い、衝突項には SRT を採用した. 計算格子には64block × 32³cellのマルチブロック直交格子を用いて、スレ ッド数を 1[~]32 に変化させて実行時間の変化を調べ、その結果を図 9 に示す. またその際の プロファイラの結果を図 10 に示すが、並列計算時のホットスポットはブロック間で情報通 信を実施する interfaceQ という関数であった. LBM は Navier-Stokes 方程式に比べて計算 コストが小さいが使用変数が多く、コード改善によって演算に比べて通信がより際立つ結 果となっている. 今後は通信に関係する時間積分の箇所を分離する等、通信コストをうま く隠蔽できる実装に変更して性能調査を実施する予定である.

図 9 FX100 1node を用いたスレッド並列性能

ndication View Rank View Thread View			な よ湯き 南子とーム			Heasured Informati
The Energy View						
Summary Topology Bar Chart Data Compare						
Dasis Procedure Loop Line						
		_				
Name	Start	End	Operation (5)	Communication (5)	Cost	Thread Barrier Cost
pplication						
emSelver-idouble, (unsigned long)3, (unsigned long)27>11interfaceQ(lbmSing	3619	3930				
mSolvercdouble, (unsigned long)3, (unsigned long)27>11Stream(bcmSingleE	2787	2866				
omSolver <double. (unsigned="" long)27="" long)3,="">11Collision(bcmSingle</double.>	2294	2782				
cmBlockManagercdouble, (unsigned long)3, lbmMaskcdouble, (unsigned lon	226	613				
amSolver <double, (unsigned="" long)27="" long)3,="">1;Norm(bomSingleBlo</double,>	2872	2926				
mBelver <double, (unsigned="" long)27="" long)3,="">++calc8Q(bcmSingle8)</double,>	2343	2390			-	
mSolver <double. (unsigned="" long)27="" long)3,="">11calcQ(bomSingleBlo</double.>	2273	2339				
cmBlockHanager <double, (unsigned="" lbmmask<double,="" lon-<="" long)3,="" td=""><td>19</td><td>26</td><td></td><td></td><td></td><td></td></double,>	19	26				
mSolver <double, (unsigned="" long)27="" long)3,="">11TimeInteg(int),_Oh</double,>	4070	4225				6
emBelver=double, (unsigned long)3, (unsigned long)27>++BCCavity(int *, int *	2947	3238				
bmSolver <double. (unsigned="" long)27="" long)3.="">::interfaceQ(int)OV</double.>	3599	3614			1	
bmSolver <double, (unsigned="" long)27="" long)3,="">11updateTime(int)C</double,>	4232	4243			1	
amSolver <double. (unsigned="" long)27="" long)3.="">::outputP3DQALL(cha</double.>	4275	4457				
tdiibasic_ostream <char, stdiichar_traits<char="">>iisentryii~sentry()</char,>	187	193				
bmSolver <double, (unsigned="" long)27="" long)3,="">11setInitialCondition(</double,>	1271	1627				
ool atdii_M_mit <char, atdiichar_traits<char="">>(atdiibasic_ostream<t1, t2=""> &</t1,></char,>	219	230				
tdiibasic_ostreamichar, atdiichar_traitaitchar>>riwite(const char *, long)	441	458				
cmBlockManager <double, (unsigned="" lbmmask<double,="" lon<="" long)3,="" td=""><td>1489</td><td>1682</td><td></td><td></td><td></td><td></td></double,>	1489	1682				
bmSolver(double, (unsigned long)3, (unsigned long)27>11interpolateQ(int)_f	262	276				1
_iveetbf						
nalloc	**	**				
bmSingleBlock <double, (unsigned="" lbmmask<doubl<="" long)27,="" long)3,="" td=""><td>57</td><td>180</td><td></td><td></td><td></td><td></td></double,>	57	180				
thread_mutex_trylock						
_bik						
_pthread_mutex_unlock_usercnt						
perator new (unsigned long)		**				
bmSelver <double. (unsigned="" long)27="" long)3.="">11outputP3DQ(char *</double.>	1950	2090				
_pthread_muter_unlock_internal						
cmBlockNanager <double, (unsigned="" lbmnask<double,="" lon<="" long)3,="" td=""><td>1235</td><td>1472</td><td></td><td></td><td></td><td></td></double,>	1235	1472				
has added						

図 10 プロファイラによるホットスポットの抽出

3.1.5 まとめ

メニーコア WG での JAXA LBM コードの性能調査の結果,以下の知見が得られた.

- ▶ central moment に関わる行列演算は、2次元の場合は SIMD 化を促進するより書き下した方が性能向上が期待できる.
- ▶ SRT と比較して、コード改善した Cascaded LBM の解析コストは2次元で約1.25 倍程度にまで削減することが出来た.3次元の場合は27×27の行列を書き下すことになり、 演算量や演算の複雑さが増すため、調査する必要がある.
- ▶ LBM は Navier-Stokes 方程式ベースのアプローチより格子点当りの演算量は少ないが、 格子点当りの変数が 2 次元では 9 変数 (NS では 4 変数 + α), 3 次元では 27 変数 (NS では 5 変数 + α) であり、ノード内・ノード間の情報通信量が相対的に増えるため、 ブロック間の情報通信を隠ぺいする等の処置が必要である.
- ▶ 現状では変数配列をダブルポインタで管理しているが、アーキテクチャやコンパイラの観点でどのようなデータの持たせ方が良いか(SoA or AoS)、検討する必要がある.

3.2 MUTSU コード高速化の検討

3.2.1 はじめに

MUTSU コードは、核融合・トーラスプラズマの不安定性研究や、これに関わる基礎研究の ために使用する汎用流体コードである。MUTSU コードでは、基礎研究用の矩形形状(周期境 界、非周期境界条件を含む;直角座標系を使用)や、核融合研究向けのトーラス構造を近 似的に表現するための歪んだ矩形形状(この場合には非直交曲線座標系で数式を表現する)、 さらには直角座標や非直交曲線座標領域を組み合わせた座標において、拡張 MHD 方程式や Navier-Stokes 方程式を解くことを想定している。対象となる方程式によって使用するモジ ュールを変える(コード名称も、方程式に応じて MUTSU/cXMHD3D, MUTSH/cNS3D などと名前 を変える)が、空間微分や時間発展パートは共通となっている。

MUTSU コードは、入力パラメータで二次精度中心差分、三次精度風上差分(KK スキーム)、 四次精度中心差分、六次精度コンパクト差分、八次精度コンパクト、十次精度コンパクト 差分を切り替えるように設計されている。数値フィルターも、陽的なフィルターから十次 精度コンパクトフィルターまでをサポートしている。また、ほぼ同じ構造のモジュールを 使って、3 方向に周期的な場合のフーリエ・擬スペクトル法によるシミュレーションが可能 になっている。(こちらは、コード名末尾に"-T3"をつける。)また、矩形格子形状で複雑 物体周りの流れを扱うために、volume penalization 用のモジュールも用意されている。

このコードの性能は、方程式の選択や微分・フィルターに関わるスイッチの選択で性能 が大きく変わるため、ここではコンパクト差分法のパートと、MUTSU-T3 で使う 3 次元 FFT のパートについて報告する。

3.2.2 MUTSU, MUTSU-T3 コードの開発・コンパイル

このコードの開発は、主に核融合科学研究所の"プラズマシミュレータ"(富士通株式会 社製 FX100)で行っている。また、一部の開発は、東京大学の Oakforest-PACS(富士通株式 会社製)で行っている。FX100 における主要なコンパイルオプションは、以下の通りである。

FC = mpifrtpx

FFLAGS = -Cpp -Cfpp -Kfast -Kreduction -Kopenmp -Kocl -Kparallel -Koptmsg=2 -Qt また、Oakforest-PACS での主要なコンパイルオプションは以下のとおりである。

FC = mpiifort

FFLAGS = -fpp -02 -axMIC-AVX512 -qopt-report -qopenmp

-mcmodel=medium -convert big_endian

3.2.3 コンパクト差分パートの高速化

コンパクト差分では、以下のような3重もしくは5重対角連立方程式を解く必要がある。

$$\begin{split} \beta f'_{i+2,j,k} &+ \alpha f'_{i+1,j,k} + f'_{i,j,k} + \alpha f'_{i-1,j,k} + \beta f'_{i-2,j,k} \\ &= c \left(f_{i+3,j,k} - f_{i-3,j,k} \right) + b \left(f_{i+2,j,k} - f_{i-2,j,k} \right) + a \left(f_{i+1,j,k} - f_{i-1,j,k} \right) \\ \beta f'_{i,j+2,k} &+ \alpha f'_{i,j+1,k} + f'_{i,j,k} + \alpha f'_{i,j-1,k} + \beta f'_{i,j-2,k} \\ &= c \left(f_{i,j+3,k} - f_{i,j-3,k} \right) + b \left(f_{i,j+2,k} - f_{i,j-2,k} \right) + a \left(f_{i,j+1,k} - f_{i,j-1,k} \right) \\ \beta f'_{i,j,k+2} &+ \alpha f'_{i,j,k+1} + f'_{i,j,k} + \alpha f'_{i,j,k-1} + \beta f'_{i,j,k-2} \\ &= c \left(f_{i,j,k+3} - f_{i,j,k-3} \right) + b \left(f_{i,j,k+2} - f_{i,j,k-2} \right) + a \left(f_{i,j,k+1} - f_{i,j,k-1} \right) \end{split}$$

MUTSU コードにおいてこれらの微分評価を行うサブルーチンは、上記の方程式3セットの右 辺の計算と、連立方程式の求解パートで構成される。右辺項の計算は、中心差分法などと 同じ構造なので、比較的容易に、そこそこ高速な性能(FX100 でピーク性能比 6-8%前後) を達成可能である。連立方程式の解法としては、ここでは LU 分解法を採用した。(メニー コア WG の会合では、問題規模から考えて、行列反転型の直接解法の方が速いとの指摘があ った。)

八次精度のコンパクト差分法を使用した場合(上の式で係数 β=0) について、LU 分解パ ートのループ融合などの最適化を行った。具体的には、

- ベクトル3成分の勾配(速度勾配テンソル)など、複数のコンパクト差分を一括して計算することによって流量を増加
- LU 分解で使用する作業配列の次元を増やし、ループ融合たとえば、入力データ b1, b2, b3 についてdo k = 1, n2
 do I = 1, n1
 dm(1, k, i) = b1(i, k, ijk)
 dm(2, k, i) = b2(i, k, ijk)
 dm(3, k, i) = b3(i, k, ijk)
 end do
 end do

などの処理について、事前に入力データ b1, b2, b3 を一つの配列 b にまとめ、

do k = 1, n2 do i = 1, n1 do j = 1, 3 dm(j,k,i) = b(i,k,ijk,j) end do end do end do とする

● 融合配列の次元の入れ替え(最内側⇔再外側)を行う

などの工夫を施した。この結果、ピーク性能比で 4-9%を実現した。なお、配列の第2成分(x, y, zの直角座標では y 成分)に関する微分操作については、ストライドアクセスが 発生することによる速度の低下のため、3方向についての微分の中では最も低速な演算 (ピーク性比 4%)となった。

3.2.4 3 次元 FFT の通信時間隠蔽による周期境界用コード MUTSU-T3 コードの高速化

3 方向に対して周期境界条件が課される流体シミュレーションでは、中心差分法やコンパクト差分法に代えて、擬スペクトル法を使うことが多い。以下は、非圧縮性 Hall MHD シミュレーション版(MUTSU / iHallMHD3D-T3)の場合についての報告である。

擬スペクトル計算の場合、3 次元 FFT がコードの性能を決定づける。3 次元 FFT では通信・ データの転置が計算時間のかなりの部分を占めるため、スーパーコンピュータがその性能 を十全に発揮するのは難しい。ここでは、3 次元高速フーリエ変換ライブラリ "FFTE"(http://www.ffte.jp)をベースに、そのパーツを分解し、複数のフーリエ変換を 束ねることで計算による通信時間の隠ぺいを図った。なお、この隠蔽によるシミュレーシ ョンコードの高速化は JHPCN 平成 30 年度共同研究課題にもなっており、共同研究者・FFTE の開発者である高橋大介博士から FFTE Ver. 6.0 および 6.2 α の提供を受けて行った。

この研究における通信時間の隠ぺいは、流体コードが往々にして保存形式で記述される ことを利用している。たとえば速度勾配テンソルの演算は速度場3成分それぞれの勾配を 求めることになり、3つのフーリエ変換を3セット行うと考えることができる。1回のフ ーリエ変換は、一方向へのフーリエ変換、転置・通信を3回繰り返すことで構成されるた め、一つの変数のフーリエ変換と他の変数の通信・転置を重ねることで、通信時間をある 程度隠蔽できると考えられる。

3.2.5 3 次元 FFT における計算時間の隠ぺい結果

計算時間の隠ぺいを行う場合と行わない場合の MUTSU /iHal1MHD-T3 における 1 ステップ あたりの計算時間を、FX100 および Oakforest-PACS で測定した。この隠蔽の際の関数の呼 び出しは、もう一つの著名な3次元 FFT パッケージである P3DFFT (https://www.p3dfft.net) において、p3dfft_ftran_r2c_many, p3dfft_ftran_c2r_many といった名前の末尾に"_MANY" がつく関数と対応がつくため、P3DFFT と FFTE の比較も行った。

この計測結果は下表(表1,表2)のとおりである。表1はFX100、表2はOakforest-PACS で計測した結果である。表中で「(通常版)」は、3次元FFTを個別にコールする場合を示し ている。P3DFFTの項目で「(_MANY)」は、p3dfft_ftran_r2c_many,p3dfft_ftran_c2r_many を用いて複数の変数に対する一括フーリエ変換を行う場合を示す。FFTEの「(隠蔽版)」項 は、FFTEのコードを使用して複数のフーリエ変換(ここでは3変数)を行いつつ、通信に ついて隠蔽を行った場合を示している。FX100上での計測においては、アシスタントコアを 使用していない。この点において、FX100に特化した最適化によってさらに改善をもたらす 余地は残っている。

この表からわかる通り、多くの場合において P3DFFT よりも FFTE の通常版の方が短時間 で演算を終えていることがわかる。特に表 2 では、P3DFFT の_MANY 版の方が通常版よりも 7-30%高速であること、FFTE では通常版よりも隠蔽版が 11%程度高速であるが、最大規模の 計算(N³=4096³)では通常版の方が速い。最後の点についてはさらに調査が必要であり、また、 P3D は比較的スレッド並列化を苦手とする(フラット MPI に近いほど、性能が顕著に高い) ためにスレッド並列数についての精査が必要であるなど、いくつかの課題は残る。しかし、 概ね所期の目標を達成することができたと考えられる。他方、FX100 に比べて、 Oakforest-PACS での性能はやや低いものとなっている。この点から、Oakforest-PACS につ いての最適化をさらに進める必要がある。

表 1. 核融合科学研究所 F100"プラズマシミュレータ"における 3 次元 FFT の通信時 間の隠ぺい(MUTSU / iHallMHD3D-T3 の 1 ステップに要する時間;単位[秒])

N^3	Nodes	P3DFFT	FFTE(通常	FFTE(隠蔽あ
	(Processes)	(_MANY)	版)	り)
2048^{3}	512 (1024)	37.939		24.990
1024^{3}	128 (256)	14.784	14.094	12.584
512^{3}	32 (64)	5.000	4.846	3.742
256^{3}	8 (16)	2.276	3.096	1.751

表 2. Oakforest-PACS における 3 次元 FFT の通信時間の隠ぺい(MUTSU / iHallMHD3D-T3の1ステップに要する時間;単位[秒])

格子点数	Nodes	P3DFFT	P3DFFT	FFTE	FFTE
	(Processes)	(通常版)	(_MANY)	(通常版)	(隠蔽版)
N3=40963	1024(16384)	327.221	306.214	231.546	247.666
N3=20483	512(16384)	42.553	38.879	30.668	27.524
N3=10243	128(4096)	18.573	17.844	13.408	12.867
N ³ =512 ³	32(1024)	8.662	8.228	5.398	4.906
N3=2563	8(256)	4.321	2.700	2.700	2.550

コード開発の目的

- 流体現象に関わる様々なシミュレーションを、矩形格子と高次差 分で実行する
- 直角座標、
 極座標等直交座標、
 非直交曲線座標
- 周期境界 · 非周期境界

コード開発の経緯と現在の方 針

- AMR コードとしてスタート
- AMR 部分はpending
- AMR構造を活かした柔軟な構造による多目的化(たとえば C-grid, O-gridの変形など)を優先

end subroutine compact_der3uniXYZ

コンパクト差分パート最適化

• 最適化前の高コスト部の状態

高コストルーチン	SIMD 化	SWP 化	自動並 列化	経過時間 (コード全体200ス テップ 898 秒)
Banbks_2d_3vars	0			74.91
Banbks_2d_u2	0			61.91
Compact_der_xyz	0	0	0	12.80
Compact_der_z1	0	0		3.54

- OpenMP化が速い場合とFX100自動並列化の方が速い場合が混在(ループ長に関する分岐判断のため)
 全ループをOpenMP化すると低速化するので,個別に切り分け
- キャッシュミス等の分析と配列融合で最適化

配列融合について (1-1)

・banbks 2d 3varsのcase 1 (修正前) real(dd), dimension(n1, n2, n3) :: b1, b2, b3 do k = 1, n2 do i = 1, n1 dm(1, k, i) = b1(i, k, ijk)dm(2, k, i) = b2(i, k, ijk)dm(3, k, i) = b3(i, k, ijk)enddo enddo 1 = m1 do k = 1, n1 i = indx(k)if(i, ne, k) then do in2 = 1, n2 adm1 = dm(1, in2, k)dm(1, in2, k) = dm(1, in2, i)dm(1, in2, i) = adm1 adm2 = dm(2, in2, k)dm(2, in2, k) = dm(2, in2, i)dm(2, in2, i) = adm2adm3 = dm(3, in2, k)dm(3, in2, k) = dm(3, in2, i)dm(3, in2, i) = adm3 end do end if (中略) do k = 1, n2do i = 1. nIbl(i,k,ijk) = dm(1,k,i)b2(i, k, ijk) = dm(2, k, i)b3(i, k, ijk) = dm(3, k, i)enddo enddo

LU分解 banbks_*_3vars ... 3 变数一括变换

配列融合前 Real(dd),dimension(n1,n2,n3)::b1,b2,b3 配列融合後(内側) Real(dd),dimension(3,n1,n2,n3)::b 配列融合後(外側) Real(dd),dimension(n1,n2,n3,3)::b

配列融合について(1-2) 最内で融合

	 banbks_2d_3varsのcase 1(修正後-最内で配列融合)
do k = 1, nZ	real (dd), dimension (3, n1, n2, n3) 💠 b
do i = 1, n1	
dm(1, k, i) = b1(1, k, ijk)	do $k = 1$, n2
dm(2, k, i) = b2(i, k, ijk)	do $i = 1$, nl
dm(3, k, i) = b3(1, k, ijk)	do j=1,3
enddo	dm(i, k, i) = b(i, i, k, i, ik)
enddo	anddo
l = m1	enddo
do k = 1, n1	enddo I = m1
i = indx(k)	do k = 1, n1
2022 COD 2014 2004	i = indx(k)
if(i.ne.k) then	
do $in2 = 1$, $n2$	if(i.ne.k) then
adm1 = dm(1, in2, k)	do in2 = 1, n2
dm(1, in2, k) = dm(1, in2, i)	adm1 = dm(1, in2, k)
dm(1, in2, i) = adm1	dm(1, in2, k) = dm(1, in2, i)
admZ = dm(Z, inZ, k)	dm(1, in2, i) = adm1
dm(2, in2, k) = dm(2, in2, i)	adn2 = dm(2, in2, k)
dm(2, 1n2, 1) = adm2	dm(2, in2, k) = dm(2, in2, i)
adm3 = dm(3, m2, k)	dm (2, in 2, i) = adm 2
dm(3, 1nZ, K) = dm(3, 1nZ, 1)	adm3 = dm(3, in2, k)
am(3, 1nZ, 1) = adm3	dm (3, in2, k) = dm (3, in2, i)
end do	dm (3, in 2, i) = adm 3
end II	end do
白殿)	end if
┲ ┉ ┏/	if(1, t, n) = +
	do i = k+1, 1
	aval = al(k, i-k)
do $k = 1, n2$	do in2 = 1, n2
do i = 1, n1	dm(1, in2, i)=dm(1, in2, i)-aval*dm(1, in2, k)
b1(i, k, i jk) = dm(1, k, i)	dm(2, in2, i)=dm(2, in2, i)-aval*dm(2, in2, k)
b2(i, k, ijk) = dm(2, k, i)	dm (3, in2, i) = dm (3, in2, i) - aval*dm (3, in2, k)
b3(i, k, ijk) = dm(3, k, i)	end do
enddo	end do
enddo	end do

(中略)

配列融合について(1-3) 最外で融合

配列融合について (1-4) 結果比較(1/-ド4プロセス500回コール時間)

Banbks_2D_3vars の実行時間						
	Case 1	Case 2	Case 3	計(秒)	改善率	
修正前	3.24	1.44	1.90	6.59	-	
最内	3.17 (4.09%)	1.53 (9.09%)	1.74 (6.52%)	6.43	2.30%	
最外	3.63	1.45	1.90	6.99	-6.12%	

Banbks_2D_u2 (Banbks_2D_3vars 類似;変数長偶数限定) 実行時間						
	Case 1	Case 2	Case 3	計(秒)	改善率	
修正前	0.76	0.39	0.66	1.81	-	
最内	0.94	0.72	0.97	2.63	-45.01%	
最外	0.75	0.39	0.66	1.80	0.59%	

Case 1-3の実行回数にも依存するが、最内がやや有利 非保存的な方程式などでは、高速化の保証がない Case 1 がコンパクト差分最適化(ピーク性能比向上)のための問題点

3次元FFT 'FFTE 'を用いた 計算時間の隠蔽

- ・平成30年度JHPCN 共同研究課題
 「電磁流体力学乱流の高精度・高並列LESシミュレーションコード開発研究」
 共同研究者:高橋大介先生(筑波大)他
- 3次元FFT ... FFTE (<u>http://www.ffte.jp</u>) ver 6.0
- 基本方針
 3次元FFT を分解
 多重FFT=>転置 多重FFT=>転置 多重FFT
 通信と計算・転置のオーバーラップ
 * p3dfft の_MANY 機能と同様

FX100性能測定詳細(ループ交換 等最適化前後比較)

	Elapsed(sec	s)		1 次キャッシュミス率 (%)			
	変更前	変更後	改善率	変更前	変更後	改善率	
FFTINVXL1	42.56	34.00	20.1%	29.97%	26.94%	10.1%	
FFTINVYL1	31.14	26.74	14.1%	30.32%	26.93%	11.2%	
FFTINVZL1	36.86	29.26	20.6%	30.20%	26.96%	10.7%	

pproc	亦百	timesterloop	工亦施	溢亦地	a)正変換	b)逆変換	H(h/a)	
TIPT OC	及史	L'Illes Lep Toop	正友侠	定友侠	(1 回)	a) 正変換 b) 逆変換 (1回) (1回) 1.2388 1.4029 1.2002 1.3423 0.8088 0.9859 0.7916 0.9589 0.4409 0.4958 0.4323 0.4851 0.1766 0.2132	10 (b/ u/	
256	前	782. 4	247.8	412.5	1. 2388	1. 4029	113. 2%	
250	後	757. 2	240.0	394. 7	1.2002	1. 3423	111.8%	
540	前	491.1	161.8	289. <mark>8</mark>	0. 8088	0. 9859	121.9%	
512	後	480. 8	istep loop 正変換 i逆変換 a) 正変換 782.4 247.8 412.5 1.2388 757.2 240.0 394.7 1.2002 491.1 161.8 289.8 0.8088 480.8 158.3 281.9 0.7916 249.6 88.2 145.8 0.4409 244.7 86.5 142.6 0.4323 105.9 35.3 62.7 0.1766 105.4 34.6 62.9 0.1732 76.5 26.4 46.4 0.1319 76.3 26.2 46.3 0.1309	0. 9589	<mark>121. 1%</mark>			
1001	前	249.6	88. 2	145. <mark>8</mark>	0. 4409	0. 4958	<mark>112.5%</mark>	
1024	後	244. 7	86. <mark>5</mark>	1 <mark>42.</mark> 6	<mark>0. 4323</mark>	0. 4851	112.2%	
2040	前	105. 9	35. <mark>3</mark>	62.7	0. 1766	0. 2132	120. 7%	
2046	前491.1161.8289.80.808後480.8158.3281.90.791前249.688.2145.80.440後244.786.5142.60.432前105.935.362.70.176後105.434.662.90.173前76.526.446.40.131	0.1732	0. 2138	123. 5%				
1000	前	76.5	26. <mark>4</mark>	46.4	0. 1319	0. 1579	119.8%	
4090	後	76.3	26.2	46.3	0. 1309	0. 1576	120. 4%	

隠蔽効果の検証 (FX100)

測定データ 格子数:2048x2048x2048 ステップ数:10 スレッド数:16

Time step loop							
	P3dfft 2.7.5		ffte(Xペンシル)		ffte(Zペンシル)		
nproc	通常版	many版	通常版	隠蔽版	通常版	隠蔽版	
256	2283.016	2138.858	1577.800	1139.746	1092.112	821.853	
512	1036.223	986.424	1160.650	973.610	762.255	549.588	
1024	482.646	428.720	511.279	349.656	342.041	246.963	
2048	198.744	199.216	201.124	135.184	132.365	93.802	
4096	88.054	89.913	140.027	106.548	86.406	61.901	

- 川島康弘氏(富士通(株))による計測
- 注:現在 FFTE 6.0 6.2α移行、隠蔽版は若干速度低下(最適化中)

隠蔽効果の検証(Oakforest-PACS)

- ライブラリ
 fftw ... fftw 3.3.6-pl2
 p3dfft ... p3dfft3.7.7
 ffte ... ffte ver 6.0
- コンパイル
 mpiifort –fpp –O2
 -axMIC-AVX512 –qopt-report –qopenmp
 -mcmodel=medium –convert big_endian

隠蔽効果の検証(Oakforest-PACS)

	Time for 1-time				
		P3dfft		FFTE (z-pencil)	
	Node, procs	通常版	MANY版	通常版	MANY版
N ³ =4096 ³	1024, 16384	327.221	306.214	231.546	247.666
N ³ =2048 ³	512, 16384	42.553	38.879	30.668	27.524
N ³ =1024 ³	128, 4096	18.573	17.844	13.408	12.867
N ³ =512 ³	32,1024	8.662	8.228	5.398	4.906
N ³ =256 ³	8,256	4.321	2.700	2.700	2.550

FFTE N³=4096³ で通常版とMANY版の計算時間の逆転については、要調査。

3.3 生体分子粗視化シミュレータ CafeMol の FX100 での性能測定とチューニング

理化学研究所 情報システム部

検崎博生

富士通株式会社 TC ソリューション事業本部

渡邉健太

3.3.1 はじめに

CafeMol はタンパク質や核酸のような生体分子の粗視化シミュレータである。CafeMol で 用いる粗視化モデルでは、全原子モデルに比べて粒子数が 100 分の 1 程度まで減り、計算 量が大幅に減る。このことにより長時間の時間発展の計算が可能になり、生体分子の大規 模な構造変化を取り扱うことができるのであるが、同時に並列性能を出しにくいことにも つながっている。具体的には、時間発展の 1 step が 1 ms 以下になることも多く、ノード 間通信が問題になってくるので複数ノードでの並列計算を行うことは難しく、1 ノードでの 性能向上を図ることが大事になってきている。

本 WG では、CafeMol の性能測定とチューニングについて検崎よる 2 回の発表と富士通渡 邉による 1 回の発表があったので、ここではそれらをまとめることとする。最初に検崎に よる 1 回目の発表では、FX100 と skylake の比較と計算量が一番多い部分について配列の構 造を Structure of Array (SoA)から Array of Structure (AoS) への変更を行うチューニング を行った。次に、渡邉の発表では FX100 が Skylake に比べて性能が出ていない部分につい て性能測定とチューニングが行われた。最後に、検崎による 2 回目の発表では、渡邊によ り示されたタイマーのオーバーヘッドの確認と追加のチューニングを行った。

3.3.2 プログラム概要

分子動力学シミュレーションでは、分子の動きを時間積分することにより系を時間発展 させるわけであるが、分子間に働く力の計算が最も計算時間が掛かる部分となっている。 CafeMol では力の計算にネイバリングリスト方式を用いて計算量を減らしており、ネイバリ ングリストを分割する形で MPI と OpenMP によるハイブリッド並列化を行っている。

粗視化された粒子間に働く相互作用はさまざまなものがあり、相互作用毎に異なるチュ ーニングが必要になってくる。ここではタンパク質/DNA 複合体であるヌクレオソームの 10,000 step の時間発展の性能測定を行う。ヌクレオソームは粗視化粒子数は 2,000 程度の 系で、計算量が一番多いのが静電相互作用の計算で粒子数の 2 乗程度の計算量であり、そ れ以外に粒子数の数倍程度の計算量であるさまざまな相互作用がある。

3.3.3 測定環境

検崎による性能測定には、理化学研究所の HOKUSAI システムを使用した。

- FX100:SPARC64TMXIfx(1.975H)、富士通コンパイラ、-Kfast
- Intel Xeon : Intel Xeon Gold 6148(3.1GHz)、インテルコンパイラ 富士通渡邉による性能測定には、以下のシステムを用いた。
- FX100:SPARC64TMXIfx(1.5H)、富士通コンパイラ
- Intel Xeon : Intel Xeon Gold 6148(3.1GHz)、インテルコンパイラ

3.3.4 検崎による1回目の発表のまとめ

以前の性能測定で、FX100 で 1 ノード 32 コアを用いた時は、MPI による 2 プロセス並列 と OpenMP による 16 スレッド並列の組合せが一番速くなることを確認していた。Skylake の 1 ノード 40 コアでは、4 プロセスと 10 スレッド並列の組合せが一番速くなった。FX100 と Skylake を比較すると、FX100 は一番計算量の大きい静電相互作用は SIMD 化により Skylake よりも速くなった。一方、他の相互作用は SIMD 化が困難で Skylake に比べて数倍程度遅く なるものが多く、全体の計算時間も FX100 の方が遅くなった。

次に、skylakeにおいて静電相互作用のさらなるチューニングを行った。具体的には静電 相互作用につかうネイバリングリストの配列の構造を Array of Structure(AoS)から Structure of Array(SoA)に変更した。結果として、静電相互作用の計算時間が 6.1 s から 4.6 s に高速化された。条件によってどちらの構造を使った方がいいかは変わるようだが、 配列の構造を変えることがチューニングの1手法として有効であることを確認できた。

3.3.5 富士通渡邉による発表のまとめ

上記の検崎による測定結果で、多くの相互作用で FX100 の性能が Skylake に比べて性能 が悪かったので、富士通渡邉により性能測定とチューニングが行われた。状況を簡単にす るために、ボンド長、ボンド角、Go ポテンシャルの3つの相互作用について調べることと した。

まず、MPI_wtime により時間計測を行っていたが、オーバーヘッドが大きいことが示された。オーバーヘッドが少ないタイマーとして、FX100 では gettod を、Skylake では clockx を使うこととした。

チューニングとしてはボンド長について行われ、手動によるループアンスイッチング と"!ocl simd_redundant_v1()"を配列式の直前に挿入することが行われ、10%程度の性能 向上が得られた。また、ループ最後のリダクション演算部にインダイレクトアクセスがあ り、データの重なりがないようなレイアウトにすると大きな最適化の効果を得られること が推測された。

3.3.6 検崎による2回目の発表のまとめ

富士通渡邉による指摘を受け時間計測の方法についての確認とボンド長とボンド角の相 互作用計算のチューニングを行った。

タイマーについては、MPI_wtime と gettod に加えて clock_time も試してみたところ、 MPI_wtime のオーバーヘッドが大きいことが再確認され、gettod と clock_time の差は小さ かったので、移植性を考え clock_time を採用することとした。

ボンド長のチューニングについては、OpenMP のスレッド並列のチャンクサイズを1にす ることによって行った。これは、ボンド長のネイバリングリストでは、リダクション部分 がスレッド並列毎に異なる領域を持ち、ネイバリングリストの作成方法から4 つ以上離れ ていればリダクション部分が重ならいないようになっていることを利用している。このこ とから、チャンクサイズを1にしてスレッド並列数が3以上ならば、リダクション部分に 重なりがないことが保証されるのである。よって、"!ocl norecurrence()"を付けること により、ボンド長の計算が SIMD 化できた。ただし、ボンド長ではチャンクサイズを1にす ることによるオーバーヘッドが大きく、SIMD 化による性能向上は小さかったので、結果と して高速化にはならなかった。

また、ボンド角についても同様のチューニングが行った。こちらは SIMD 化による性能向 上の効果が比較的大きく、オーバーヘッドを込みで 30%程度高速化した。ただし、Skylake に比べると性能はまだまだ不十分ではあり、さらなる高速化が求められる。

3.3.7 まとめ

CafeMol を FX100 と Skylake 上で性能測定を行い、いくつかのチューニングを試みた。最 も計算量の多い静電相互作用については、skylake について AoS から SoA の変更により性能 が向上した。それ以外の計算量が少ない相互作用について FX100 についてチューニングを 行ったところ若干の性能向上に成功したが、今回のチューニングにより差が縮まったとは いえ Skylake に比べて十分な性能を出すことが出来なかった。この理由は CPU やコンパイ ラによる out of order などの命令の充実に差があるためと考えられ、ポスト京では一部改 善が見込めると考えらえる。

また、MPI_Wtime については無視できないオーバーヘッドがあり、時間計測を行う際は system_clock やシステム依存なルーチンの利用などを行う必要がある場合がある。この指 摘に対し、FX100 では経過時間を測定する際、NTP による時間自動調整結果が補正されな いように clock_gettime システムコールを用いているためであると富士通より報告があっ た。なお、ポスト京で MPI_Wtime のオーバーヘッドは FX100 で用意されている gettod 相 当の処理に変更され、MPI_Wtime の性能は改善される見込みであることも併せて富士通か ら報告されている。 2017/10/20 SS研メニーコア時代のアプリ性能WG 第4回会合

生体分子粗視化シミュレータCafeMol Skylakeでのチューニング

検崎博生 理研 情報システム部

概要

- ・粗視化モデルとCafeMolについて
 - •生体分子シミュレーションと粗視化
 - •CGタンパク質/DNAモデル
 - •計算方法と並列化
- •Skylakeでのベンチマーク結果
 - •1ノードでのMPI並列数とスレッド並列数
- •Skylakeでのチューニング結果
 - •静電相互作用のSIMD化
 - データ構造変換
HOKUSAI System

- GreatWave Massively Pallarell Computer (GWMPC)
 - 1,080 nodes, 32 cores/node, 34,560 cores
 - 1.092 PFLOPS (1.975 Hz x 16 FP x 32 cores x 1,080 CPUs)
 - CPU: SPARCTMXIfx (1.975GHz, 32 cores, 1 CPU/node)
 - Memory: 32GB/node
 - Memory BW: 480 GB/s/node
 - Interconnect: Tofu2 6D-Mesh/Torus (12.5GB/s, bidirectional)
- Application Computing Server (ACS)
 - Large memory server: 2 nodes, 1.5 TB/node
 - GPU server: 30 nodes, 4 GPU/node, Tesla K20X
- BigWaterfall Massively Parallel Computer (BWMPC)
 - 840 nodes, 40 cores/node, 33,600 cores
 - 2.58 PFLOPS (2.4 GHz x 32 FP X 20 cores x 1680 CPUs)
 - CPU: Intel Xeon Gold 6148(2.4 GHz, 20 cores, 2 CPUs/node)
 - Memory: DDR4-2666 96GB/node
 - Memory BW: 255 GB/s/node
 - Interconnect: InfiniBand EDR (12.6 GB/s, bidirectional)

CafeMol: Coarse-grained biomolecular simulation software H.Kenzaki, et al, J. Chem. Theor. Chem. (2011)

- Coarse-grained (CG) Protein/Nucleic acid/lipid models
- CafeMol 3.0 source code and documentation are released at <u>http://www.cafemol.org</u>
- Takada Lab (Kyoto Univ)

weight (O Denamest of Floribuilts, Oraduate School of Science, Exclo Universit

CG protein model: Go-like model

C. Clementi, H. Nymeyer, and J.N. Onuchic, J. Mol. Biol. (2000)

Based on the energy landscape theory

$$V_{protein} = V_{local} + V_{go} + V_{ex}$$

θ: bond angle
φ: dihedral angle
(0 means native state)

$$V_{local} = K_b \sum_{i} \left(r_{i,i+1} - r_{0i,i+1} \right)^2 + K_{\theta} \sum_{i} \left(\theta_i - \theta_{0i} \right)^2 + K_{\phi}^1 \sum_{i} \left(1 - \cos(\phi_i - \phi_{0i}) \right) + K_{\phi}^3 \sum_{i} \left(1 - \cos 3(\phi_i - \phi_{0i}) \right)$$

$$V_{go} = \varepsilon_{go} \sum_{i,j}^{native} \left[5 \left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 6 \left(\frac{r_{0ij}}{r_{ij}} \right)^{10} \right]$$
$$V_{ex} = \varepsilon_{ex} \sum_{i,j}^{nonnative} \left(\frac{\sigma}{r_{ij}} \right)^{12}$$

X. Yao, H. Kenzaki, S. Murakami, and S. Takada, *Nature Comm.* (2010)

CG DNA model: 3SPN.1 force field (local, base pair and excluded volume interactions)

E.J. Sambrisiki, D.C. Schwartz, and J.J. de Pablo, Knotts, Biophys. J. (2009)

$$V_{dna} = V_{local} + V_{stack} + V_{bp} + V_{ex} + V_{qq} + V_{solv}$$

$$V_{local} = K_{b1} \sum_{i} \left(r_{i,i+1} - r_{0i,i+1} \right)^{2} + K_{b2} \sum_{i} \left(r_{i,i+1} - r_{0i,i+1} \right)^{4}$$

$$+ K_{\theta} \sum_{i} \left(\theta_{i} - \theta_{0i} \right)^{2} + K_{\phi} \sum_{i} \left(1 - \cos(\phi_{i} - \phi_{0i}) \right)$$

$$\theta: \text{ bond angle}$$

$$\phi: \text{ dihedral angle}$$

$$(0 \text{ means B-type DNA)}$$

$$V_{stack} = 4\varepsilon_{1} \sum_{i,j}^{N_{en}} \left[\left(\frac{\sigma_{0ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{0ij}}{r_{ij}} \right)^{12} \right]$$

$$V_{ex} = 4\varepsilon_{1} \sum_{i,j}^{N_{en}} \left[\left(\frac{\sigma_{0i}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{0}}{r_{ij}} \right)^{6} \right] + \varepsilon_{1} (if r_{ij} < d_{cut}),$$

$$= 0 (if r_{ij} > d_{cut})$$

CG DNA model: 3SPN.1 force field (electrostatic and solvation interactions)

$$V_{qq} = \sum_{i,j}^{N} \left(\frac{q_i q_j}{4\pi\varepsilon_0\varepsilon(T,C)r_{ij}} \right) e^{-r_{ij}/\kappa D}$$
 Debye-Huckel theory
 $\varepsilon(T,C) = \varepsilon(T)a(C)$ $\varepsilon = 78$
 $\varepsilon(T) = 249.4 - 0.788T/K + 7.20 \times 10^{-4}(T/k)^2$
 $a(C) = 1.000 - 0.2551C/M$
 $+ 5.151 \times 10^{-2}(C/M)^2 - 6.889 \times 10^{-3}(C/M)^3$

Debye length

$$\kappa_D = \left(\frac{\varepsilon_0 \varepsilon RT}{2N_{\perp}^2 e^2 I}\right)$$

 $\left(2N_{A}^{2}e_{q}^{2}I\right)$

$$V_{solv} = \sum_{i < j}^{N_{solv}} \varepsilon_s \left[1 - e^{-a(r_{ij} - r_s)} \right]^2 - \varepsilon_s$$

$$\alpha^{-1} = 5.333 \text{A}$$

$$r_s = 13.38 \text{A}$$

$$\varepsilon_0 = 0.504982 \varepsilon$$

 $\mathcal{E}_s = \mathcal{E}_N A_I$ $e_N = e_0 (1 - [1.40418 - 0.268231N_{nt}]^{-1})$ $A_{I} = 0.474876(1 + \{0.148378 + 10.9553[Na^{+}]\}^{-1})$

計算規模と並列化

- •計算規模
 - 数十から数万粒子数程度
 - ヌクレオソーム1個の系:<u>1,854粒子</u>
- •並列化
 - <u>系の時間発展をMPIとOpenMPでハイブリッド並列化</u>
 - •数十並列程度の並列化
 - •力の計算はネイバリングリスト方式
 - レプリカ交換によるMPI並列
 - •通信量が少ないので大規模並列化
 - 平衡量を求める計算に使える

ネイバリングリストの例 (2体の相互作用、i<jだけをリストアップ)

i	1				2		3			4		5			6		7		8
j	2	4	7	9	5	8	4	5	9	7	8	6	7	9	8	9	8	9	9

力場の計算はネイバリングリスト方式

- 100stepに1回程度計算
- ネイバリングリストは/ード毎に分割
 - ローカルな相互作用以外は基本的に2体の相互作用の形になるので、 あらかじめ各プロセスで計算する1つめの粒子iのリストを作っておく
 - 各プロセスは割り当てられた粒子iのリストについて力場を計算する。
 - <u>最も大きな配列(粒子数x100~10,000)</u>
- •相互作用の到達範囲毎にネイバリングリストを作成
 - ローカルな相互作用
 - ボンド長、ボンド角、二面角
 - •計算を始める前にネイバリングリストを作成しておく
 - •近距離相互作用(<20A)
 - 郷ポテンシャル、排除体積、塩基対
 - 中距離相互作用(20-50A)
 - 疎水相互作用
 - 多体のため複雑なネイバリングリストに
 - <u>遠距離相互作用(>50A)</u>
 - 静電相互作用
 - イオン強度により相互作用距離が変化

Simulation of nucleosome

H.Kenzaki and S.Takada, PLoS. Comp. Biol. (2015)

Ion strength=300mM

Skylakeでの性能測定 nucleosome (10⁵step, 100mM)

1 node (40 cores)利用で、MPI並列数xスレッド並列数=40を固定して、 MPI並列数を変えて性能測定 コンパイラは、インテルコンパイラ17.0.4 最適化オプションは-fopenmp -O3 -xCORE-AVX512

1nodeでは4MPI並列x10OpenMP並列のときに一番高い性能

FX100との比較 nucleosome (10⁵step, 100mM)

	FX100(32 cores)	Skylake(40 cores)	
	-Kopenmp -Kfast -Kparallel	-fopenmp -O3 -xCORE-AVX	512
	2MPIx16OpenMP	4MPIx10OpenMP	
force	36	7	18.1
_force(comm)	6	2	5.5
_force(local)	8	8	2.0
_force(go)	1	.4	0.2
_force(pnl)	11	8	2.2
_force(ele)	5	8	7.9
random	7	.0	4.0
neighbor	12	7	1.9
update	3	.3	2.5
output	0	5	1.0
оре	59	.9	21.9
comm	6	8	5.9
main_loop	65	.7	27.8

Skylakeの方が2倍以上高速化 静電相互作用以外の相互作用とネイバリングリストで4-6倍

静電相互作用の計算方法

1. ネイバリングリストiele2mp(2, lele)を各プロセスで計算

i<jとなるペアだけを格納

2. simu_force.F90

!\$omp parallel private(tn)

call simu_force_ele(force_mp_l(1, 1, tn)) **|**異なる領域を用意

3. simu_force_ele.F90

!\$omp do private(...)

do iele1 = 1, lele

```
imp1 = iele2mp(1, iele1)
```

```
imp2 = iele2mp(2, iele2)
```

```
v21(1:3) = xyz_mp(1:3, imp2) – xyz_mp(1:3, imp1)
```

```
dist2 = v21(1)**2 + v21(2)**2 + v21(3)**2
```

if(dist2 > cutoff2) cycle

```
dist1 = sqrt(dist2)
```

rdist1 = 1.0/dist1

dvdw_dr = coef(iele)*rdist1*rdist1*(rdist1+rcdist)*exp(-dist1*rcdist)

force_mp(1:3, imp1) = force_mp(1:3, imp1) - dvdw_dr*v21(1:3)

```
force_mp(1:3, imp2) = force_mp(1:3, imp2) + dvdw_dr*v21(1:3)
```

end do

!\$omp end do nowait

SIMD化困難 !\$omp atomicでは遅くなる

スレッド毎にforce_mpの

静電相互作用のSIMD化

1. ネイバリングリストiele2charge_k(ncharge, ncharge_mpi)を各プロセスで計算。 電荷をもっている粒子のリストicharge2mp(ncharge)と座標xyz_ele(3, ncharge)を作っておく。 タンパク質は4/20が、DNAは1/3の粒子が電荷をもっているため。 2. simu_force.F90 !\$omp parallel private(tn) call simu_force_ele2(force_mp_l(1, 1, tn)) 3. simu_force_ele2.F90 !\$omp do private(...) do icharge1 = 1, ncharge imp1 = icharge2mp(icharge) for(1:3) = 0.0do iele = 1, lele_k(icharge) 電荷を持った粒子だけの座標 jcharge = iele2charge_k(iele, icharge) $v21(1:3) = xyz_ele(1:3, icharge) - xyz_ele(1:3, icharge)$

 $for(1:3) = for(1:3) + dvdw_dr^*v21(1:3)$

end do

force_mp(1:3, imp1) = force_mp(1:3, imp1) + for(1:3)

end do

!\$omp end do nowait

静電相互作用のデータ構造変換

• Array of Structure(AoS)からStructure of Array(SoA)に データ構造を変換。

• xyz_ele(1:3, ncharge)をxyz_ele(ncharge, 1:3)に変換。

	Skylake(40 cores)	Skylake(40 cores) SIMD	Skylake(40 cores) SIMD+DATA
force	18.1	16.1	14.8
_force(comm)	5.5	5.1	5.2
_force(local)	2.0	2.1	2.0
_force(go)	0.2	0.2	0.2
_force(pnl)	2.2	2.2	2.2
_force(ele)	7.9	6.1	4.6
random	4.0	4.0	3.9
neighbor	1.9	1.8	1.9
update	2.5	2.5	2.5
output	1.0	1.1	1.0
оре	21.9	20.6	19.0
comm	5.9	5.6	5.6
main_loop	27.8	26.2	24.6

計算時間は6.1s 4.6s

まとめ

•Skylakeでのベンチマーク結果

- •1ノードでは、4MPI並列x10スレッドの時に一番高い性能。
- •FX100に対して2倍以上の高速化。
 - •静電相互作用は余り変わらない。
 - •静電相互作用以外やネイバリングリングリストの計算で4-6倍の差。
- •Skylakeでの静電相互作用のチューニング
 - SIMD化により1.3倍高速化。
 - データ構造を変えることにより1.3倍高速化。

SS研 メニーコア時代のアプリ性能検討WG

[A.I. 3] CafemolのFX100とIntel Skylakeの性能差について

2018年7月20日 富士通株式会社 TCソリューション事業本部 渡邊 健太 目次

- 目的
 評価環境
 現状分析
- チューニング
- まとめ

目的

[A.I. 3] FX100おける cafemol の性能を分析する

- Intel Skylakeとの性能差の原因を調査する
- ・FX100で高速化の検討

剣崎さんから評価対象のサブルーチンを選定いただいています。

[メールの一部を抜粋]

- > 〇調べていただきたいサブルーチン
- > simu_force_bond.F90(タイマーの名称: __force(bond))
- > <u>simu_force_angle.F90(タイマーの名称: _force(angle))</u>
- > <u>simu_force_nlocal_go.F90(タイマーの名称: _force(go))</u>

 \geq

- > bondとangleは鎖で繋がった局所的な2体、3体の相互作用で、メモリアクセスが連続的 > になっています。
- > goはランダムアクセスを含むような2体の相互作用となっています。
- > どれもskylakeにくらべて6倍程度遅くなっています。

■ FX100 と Intel Skylake

		FX100	Intel Skylake
	名称	SPARC64 XIfx	Intel Xeon Gold 6148
	動作周波数	<u>1.50 GHz</u>	[Base] 2.40 GHz [MAX] Normal : 3.10 GHz AVX512 : 2.20 GHz
	コア数	32コア + アシスタントコア	20コア
C P U	キャッシュメモリ	L1I\$, L1D\$: 64KB/⊐ア L2\$: 24MB/CPU	L1I\$, L1D\$: 32KB/⊐ア L2\$: 1MB L3\$: 27.5MB
	理論ピーク性能	768GFlops/CPU (倍精度)	1,408GFlops/CPU (AVX512,倍精度)
	メモリ帯域	(240+240)GB/s/CPU	128GB/s/CPU (DDR-2666, 6chnnels)
,	CPU数, コア数	1CPU/ノード, (32コア + アシスタントコア)/ノード	2CPU/ノード, 40⊐ア/ノード
 `	理論ピーク性能	768GFlops/CPU (倍精度)	2,816GFlops/CPU (AVX512,倍精度)
1.	メモリ帯域	(240+240)GB/s	256GB/s
コン	ィパイラー	富士通コンパイラ	Intel Compiler v18.1

現状分析 (1/5)

- ■各計算機の性能を確認
 - 測定条件

[コンパイルオプション] FX100 : -Kopenmp,fast,parallel,optmsg=2 –Qa,m,p,t,x SKL :-O3 –qopenmp -qopt-report=5

■ 測定結	里					_
■炽龙响木		FX	100	Intel S		
		1	2	3	4	
評価環境	測定者	渡邊	剣崎さん	渡邊	剣崎さん	性能値の比較
	⇒竹笛楼	FX100	FX100	Skylake	Skylake	
	司 异 饭	(<u>1.5GHz</u>)	(<u>1.975GHz</u>)	(2.40GHz)	(2.40GHz)	2/4
	並列数	2p x 16t	2p x 16t	4p x 10t	4p x 10t	
タイマーの結果	_force(bond)	0.6316	0.462	0.1142	0.0912	<u>5.1</u>
	_force(angle)	2.0688	1.5737	0.2970	0.2803	<u>5.6</u>
_force(go)		1.8975	1.4399	0.2090	0.1935	<u>7.4</u>
			+1		2	-

#1

#

#1 クロック周波数の差と同じ性能差

#2 BIOS設定SNC(Sub-NUMA Clustering)が違う?

- ③: SNC disable
- (4) : SNC enable

現状分析 (2/5)

■コンパイラの最適化状況

	_force	(bond)	_force	(angle)	_force(go)		
コンパイラ最適化	FX100	SKL	FX100	SKL	FX100	SKL	
SIMD	×	×	×	×	×	×	
SWP	×	-	×	-	×	-	
FULLUNROLLING*1	0	0	0	0	0	0	
UNSWITCHING*2	0	-	0	-	×	-	
PREFETCH	×	×	0	×	×	×	

*1: doループにではなく、ループ内部の配列式に対して適応 *2: ループ内で不変な不等式をループ外に出す最適化

■実行効率の差

SIMD化されていないため、各サブルーチンの実行効率の差は下表となる

サブルーチン	① FX100(1.975GHz)	② SKL (3.1GHz) *No-SIMD	③ No-SIMD時のピーク性能比 FX100 / SKL	実行効率の差 ① / ② x ③
_force(bond)	0.462	0.0912	FX100 / SKL = 0.51	2.6
_force(angle)	1.5737	0.2803	FX100 : 252.8GFlops (1.975GHz x 32c x 4)	2.9
_force(go)	1.4399	0.1935	SKL : 496.0GFlops (3.100GHz x 40c x 4)	3.8

FUITSU

現状分析 (3/5)

■ PA情報(実行時間内訳)

✓ 命令スケジュールの改善で高速化できる部分(浮動小数点/整数演算待ち、浮動小数点/整数L1アクセス待ち)

_force(bond)	_force(angle)	_force(go)
40.76%	58.94%	52.00%

✓ 各サブルーチンの××命令コミットの割合は30%を超えており、命令数もボト ルネックになっている。

現状分析 (4/5)

■ PA情報(メモリ・キャッシュスループット情報)@FX100 ■メモリ・キャッシュスループット情報

サブルーチン	L1ビジー率	L2ビジー率	メモリビジー率	L2スループット	メモリスループット
_force(bond)	21%	7%	0%	32.08GB/s	0.00GB/s
_force(angle)	19%	2%	0%	8.13GB/s	0.00GB/s
_force(go)	23%	5%	0%	20.77GB/s	0.00GB/s

■ キャッシュミス情報

サブルーチン	L1Dミス率	L1Dミスdm率	L2ミス率	L2ミスdm率	µDTLBミス率	mDTLBミス率
_force(bond)	2.63%	91.05%	0.00%	70.27%	1.44%	0.00%
_force(angle)	0.51%	81.49%	0.00%	83.91%	0.33%	0.00%
_force(go)	1.15%	87.43%	0.00%	85.24%	0.34%	0.00%

✓ メモリビジー率・メモリスループットから、メモリアクセスはほとんど無い。
 ✓ L1キャッシュミス率は、理論値(3.15%)以下である。

現状分析 (5/5)

■ 基本プロファイル情報の採取

[実行時のコマンド] fipp -C –d fipp_dir -I hwm,cpu –P nouserfunc [プロファイル情報のテキスト出力]

Procedures profile

Application - procedures

Cost	% Ope	ration (S)	Barrier	% Sta	rt End	b	
 19792	100.0000	1873.0138	1695	8.5641		Ap	oplication
 2551	12.8890	241.4149	1600	62.7205	406	515	simu_tintegral.get_random_numberOMP_1_
2311	11.6764	218.7002	0	0.0000			III_lock_wait
2029	10.2516	192.0169	0	0.0000	5	143	simu_force_pnl_
2015	10.1809	190.6891	0	0.0000			pthread_mutex_unlock_usercnt
1990	10.0546	188.3222	0	0.0000	45	87	simu_neighbor_listOMP_1_
1276	6.4470	120.7537	0	0.0000	4	88	simu_force_ele2_
1023	5.1688	96.8112	0	0.0000	7	424	simu_force_pnl2_
806	4.0724	76.2771	0	0.0000	510	549	mt_stream.mt_genrand_int32_
538	2.7183	50.9133	0	0.0000	1032	1080	gf2xe.mult_i32_
496	2.5061	46.9388	0	0.0000	84	124	simu_neighbor_list_ele2PRL_3_
443	2.2383	41.9240	0	0.0000			g_dsin
416	2.1019	39.3690	0	0.0000	708	729	mt_stream.mt_genrand_double1_
413	2.0867	39.0839	0	0.0000	14	113	simu_force_nlocal_go_
378	1.9099	35.7725	0	0.0000	288	376	simu_force_fdih.calc_force_fdih_
231	1.1671	21.8582	0	0.0000	6	329	mloop_flexible_local_
186	0.9398	17.6023	0	0.0000	166	236	simu_force_fdih.calc_phi_
152	0.7680	14.3840	0	0.0000			GIgettimeofday_internal
146	0.7377	13.8166	0	0.0000	4	191	simu_force_dih_
139	0.7023	13.1556	0	0.0000			g_dscn2
131	0.6619	12.3968	0	0.0000	13	770	simu_neighbor_assign_

コンパイルリスト (_force(bond))

55 !\$omp do private(imp1,imp2,v21,dist,ddist2,for, & 56 !\$omp& force,efull,iunit,junit,isys,istat) <<< Loop-information Start >>> <<< [OPTIMIZATION] <<< UNSWITCHING <<< Loop-information End >>> 57 1 p 2s do ibd = ksta, kend 58 1	762772p2velse782! calc energy792p2vefull = (coef_bd(1, ibd) + coef_bd(2, ibd) * ddist2) * ddist2802p2viunit = imp2unit(imp1)812p2wjunit = imp2unit(imp2)822p2mene_unit(iunit, junit) = ene_unit(iunit, junit) + efull8322
59 1 p 2v imp1 = ibd2mp(1, ibd) 60 1 p 2v imp2 = ibd2mp(2, ibd) 61 1 <<< Loop-information Start >>> <<< [OPTIMIZATION] <<<< FULL UNROLLING	84 2 p 2v isys = ibd2sysmbr_mgo(1, ibd) 85 3 p 2s if(isys == 0) then → If文 <<< Loop-information Start >>> <<< [OPTIMIZATION] <<< FULL UNROLLING <<< Loop-information End >>>
<pre></pre>	86 3 p 6s force_mp(1:3, imp1) = force_mp(1:3, imp1) - force(1:3) 87 3 p 6s force_mp(1:3, imp2) = force_mp(1:3, imp2) + force(1:3) 88 3 p 2s else 89 3 p 2s istat = ibd2sysmbr.mgg(2, ibd)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre></pre> <pre></pre> <pre></pre> <pre>/// Content is a content is a</pre>
69 1 p 2v for = (coef_bd(1, ibd) + 2.0e0_PREC * coef_bd(2, ibd) * ddist2) * & 70 1 (-2.0e0_PREC * ddist / dist) <<< Loop-information Start >>>	90 3 p 6s imp1, istat, isys) - force(1:3) 91 3 p 6s imp2, istat, isys) - force(1:3) 91 3 p 6s force_mp_mgo(1:3, imp1, istat, isys) = force_mp_mgo(1:3, imp2, istat, isys)
<pre><< [OPTIMIZATION] <<< FULL UNROLLING <<< Loop-information End >>> 71 1 p 6m force(1:3) = for * v21(1:3) 72 1 73 2 p 2v if(inprge%i multi mge == 0) then \ If the T T </pre>	92 3 p 2 end if 93 2 p 2v end if 94 1 p 2v end do 95 !\$omp end do nowait
<pre>// 2 p 2/ in(iningo %_initial_ingo == 0) then</pre>	
74 2 p 6 $(1.3, 1000 = 10000 = 10000 = 100000 = 100000 = 100000 = 100000 = 100000 = 1000000 = 100000000$	

✓ サブルーチン内のメインループはIntel SkylakeでもSIMD化されていない
 ✓ FULLUNROLLINGはループ内の配列式に対して適応

コンパイルリスト (_force(angle))

84 1

52 !\$omp do private(imp1,imp2,imp3,v21,v32,c11,c22,c21, &	
53 !\$omp& co_theta,dba,t3,for,force_21,force_32, &	
54 !\$omp& efull,iunit,junit,isys,istat)	3 3 3 3 4 3 3 3 4 3 3 3 3 3 3 3 3 3 3
<<< Loop-information Start >>>	$\delta / 1$ COET_Da(Z, IDa) / Sqrt(C11 ^ C22)
<<< [OPTIMIZATION]	
<<< UNSWITCHING → メインループの最適化	
<	
<<< ba_nat: 2 SIIVID/SVVFはなし	$= \frac{1}{1000} = \frac$
<<< Loop-information End >>>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
55 1 p s do iba=ksta,kend	1 - 90 - 1
56 1	91 2 p s if(inmao%i multi mao == 0) then → If 文 ループ由で不迹
57 1 p m if (coef_ba(1, iba) < ZERO_JUDGE .and. coef_ba(2, iba) <	<pre></pre>
ZERO_JUDGE) cycle → cycle文	<<< [OPTIMIZATION]
	<<< FULL UNROLLING
59 1 p s imp1 = iba2mp(1, iba)	<<< Loop-information End >>>
ov i p s imp2 = iba2mp(2, iba) $\rightarrow 1 2 2 4 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7$	92 2 p 3 force_mp(1:3, imp1) = force_mp(1:3, imp1) - force_21(1:3)
p = p = mps = mps = mazmp(s, ma)	93 2 p 3 force_mp(1:3, imp2) = force_mp(1:3, imp2) + force_21(1:3) -
02 I	force_32(1:3)
	94 2 p 3 force_mp(1:3, imp3) = force_mp(1:3, imp3) + force_32(1:3)
	95 2
<pre><</pre>	96 2 p s else
63 1 n 3s v21(1:3) = xvz mn ren(1:3 imn2 iren) - xvz mn ren(1:3 imn1)	
irep)	114 2 p s endif
64 1 p 3s v32(1:3) = xvz mp rep(1:3. imp3. irep) - xvz mp rep(1:3. imp2.	115 1
irep)	116 1 p v end do
65 1	11/ !\$omp end do nowait
66 1 p s $c11 = v21(1) * v21(1) + v21(2) * v21(2) + v21(3) * v21(3)$	[_]
67 1 p s $c22 = v32(1) * v32(1) + v32(2) * v32(2) + v32(3) * v32(3)$	
68 1 p s $c21 = v32(1) * v21(1) + v32(2) * v21(2) + v32(3) * v21(3)$	
69 1	↓√ サブル―チン内のメインル―プけ
70 1 p s co_theta = - c21 / sqrt(c11 * c22)	
	Intal Shulakart SIMDAtth TISS
72 2 p s if(co_theta > 1.0e0_PREC) then $\rightarrow II X$	ILLEI ORYIARE COOLIVID ILCAL CLIVALI
73 2 p m co_theta = 1.0e0_PREC	
/4 2 p s else if(co_theta < -1.0e0_PREC) then	▼ FULLUNKULLINGはルーノ内の肥列式
$75 \ 2 \ p \ s \ co_theta = -1.0e0_PREC$	
76 2 p s end if	
11 1 79 1 n a dha - acca(ca thata) ha nat/iha)	
$r_0 = r_0 p + s$ $r_0 a = a cos(co_tneta) - ba_nat(lba)$	↓ CVCIE文あり
13 1 80 1 p c $t^{2} = c^{11} * c^{22} = c^{21**2}$	
81 2 n s if(t3 <= 1 0e0 PREC) then 3 16 \pm	
$7 \text{ II} \chi$	
83 2 n s end if	

ソースコード (force_go)

,								
¦ 67			<pre>!\$omp do private(imp1,imp2,rcut_off2,v21,dist2,roverdist2,roverdist4, &</pre>					
68			!\$omp& roverdist8,roverdist12,roverdist14,dgo_dr,for,imirror)	91 1 p if(roverdist2 < rcut_off2) cycle				
¦ 69	1	р	do icon=ksta,kend	92 1				
70	1			93 1 p roverdist4 = roverdist2 * roverdist2				
71	1	р	imp1 = icon2mp(1, icon)	94 1 p roverdist8 = roverdist4 * roverdist4				
72	1	p	imp2 = icon2mp(2, icon) フィンダイレクトアクセス	95 1 p roverdist12 = roverdist4 * roverdist8				
73	2	p	if (iclass_mp(imp1) == CEASS%RNA .AND. iclass_mp(imp2) ==	96 1 p roverdist14 = roverdist12 * roverdist2				
CLASS%	RN/	4) t	ihen 🔺 If 🕁	97 1				
¦ 74	2	р	rcut_off2 = rcut_off2_rna	98 1 p dgo_dr = 60.0e0_PREC * coef_go(icon) / go_nat2(icor				
¦ 75	2	p	else	(roverdist14 - roverdist12)				
76	2	p	rcut_off2 = rcut_off2_pro	99 1				
¦ 77	2	p	endif	100 2 p if(dgo_dr > DE_MAX) then → If文				
78	1	•		101 2 ! write (*, *) "go", imp1, imp2, dgo_dr				
79	2	р	if(inperi%i periodic == 0) then 🗳 If 🕁	102 2 p dgo_dr = DE_MAX				
1			<<< Loop-information Start >>>	103 2 p end if				
1			<<< [OPTIMIZATION]	104 1 ! if(dgo_dr > 5.0e0_PREC) dgo_dr = 5.0e0_PREC				
1			<<< FULL UNROLLING	105 1				
1			<<< Loop-information End >>>	<<< Loop-information Start >>>				
80	2	р	3 v21(1:3) = xyz mp rep(1:3, imp2, irep) - xyz mp rep(1:3, imp1,	<<< [OPTIMIZATION]				
irep)		•		<<< FULL UNROLLING				
¦ 81	2	р	else	<<< Loop-information End >>>				
1			<<< Loop-information Start >>>	106 1 p 3 for(1:3) = dgo_dr * v21(1:3)				
1			<<< [OPTIMIZATION]	107 1 p 3 force_mp(1:3, imp2) = force_mp(1:3, imp2) + for(1:3)				
			<<< FULL UNROLLING	108 1 p 3 force_mp(1:3, imp1) = force_mp(1:3, imp1) - for(1:3)				
			<<< Loop-information End >>>	109 1				
- 82	2	р	v21(1:3) = pxvz mp rep(1:3, imp2, irep) - pxvz mp rep(1:3, imp1,	110 1 p end do				
irep)			(- i) + j = 1 = i + (- i) + j = 1 = i + (- i) + j	111 !\$omp end do nowait				
83	2	р	call util pbneighbor(v21, imirror)					
84	2	p	end if					
85	1							
86	1		v21(1:3) = xvz mp rep(1:3, imp2, irep) - xvz mp rep(1:3, imp1,					
irep)	•		· · · · · · · · · · · · · · · · · · ·					
87	1							
88	1	p	dist2 = $v21(1)*v21(1) + v21(2)*v21(2) + v21(3)*v21(3)$					
89	1	٢						
90	1	р	roverdist2 = go_nat2(icon) / dist2					
		_`						

- ✓ サブルーチン内のメインループはIntel SkylakeでもSIMD化されていない
- ✓ UNSWITCHINGは適応されていない
- ✓ FULLUNROLLINGはループ内の配列式に対して適応
- ✓ cycle文あり

現状分析まとめ

■ 3つのサブルーチンの1ノードのFX100とSKLの性能は、 5~7倍SKLが良い

- FX100 (1.5GHz)とFX100 (1.975GHz)の性能差から、CPUの演算性能 (周波数)の差が実測性能に直結
- PA情報からメモリアクセスはほとんど無い
- FX100/SKLでSIMD化されていない。
 - →1ノードのFX100/SKLのピーク演算性能差が2倍程度異なるため、 FX100とSKLの実行効率の差は2.6~3.6倍になる
- PA情報(実行時間内訳)から、
 - 命令スケジューリングの改善で高速化できる部分は、40~58%ある。 → SWP化の検討
 - 命令数(XX命令コミット)の削減で高速化できる部分は、約30%ある。
 → SIMD化の検討

プログラム全体に対する性能改善1

■ 基本プロファイラから得られた "<u>III lock wait</u>"に対する対応 ■ 実行時環境変数を指定

export XOS_MMM_L_ARENA_LOCK_TYPE=0

■「0」を指定することで、malloc要求を並列処理することができる。 ■「1」がデフォルト値、逐次処理される。

■ 測定結果 (プログラム全体の経過時間)

指定なし	指定あり	改善率
130.75 (s)	115.63	13.1%

#メインループおよび調査対象のサブルーチンの性能への影響はない。

プログラム全体に対する性能改善2

■オーバーヘッドが大きい時間計測ルーチンを置き換える ■タイマールーチンの置換え

オリジナル	変更後			
	FX100	SKL		
MPI_wtime	gettod	clockx		

■タイマー結果

	FX100			SKL		MPI_wtimeの 杜光主	タイマー置換え
サブルーチン	FX100 (1.5	GHz)	FX100 (1.975GHz)				
	MPI_wtime	gettod	gettod	MPI_wtime	clockx		
force_bond	0.6316	0.4509	0.3424	0.1142	0.1005	5.1	3.4
force_angle	2.0688	1.8957	1.4398	0.2970	0.2809	5.6	5.1
force_go	1.8975	1.7119	1.3002	0.2090	0.1999	7.4	6.5

✓ 経過時間が短いサブルーチンほど、タイマーのオーバーヘッドの 影響が大きくなる

force_bondのチューニング

■ チューニング方針

1. 手動でループアンスイッチングを適応

locl simd_redundant_vl()を配列式の直前に挿入

 → この指示行を指定しないとSWP化されない。コンパイラのメッセージは、
 「スケジューリング結果を得られなかったため、ソフトウェアパイプライニングを適用できません。」

simd_redundant_vl指示行

ループ回転数がSIMD長で割り切れない場合でも、マスク付きSIMD命令を利用し、SIMD実行するループを生成する。

57	1	if(inmao%i multi mao == 0) then ← 手動ループアンスイッチング			
58	1		74	2	! calc force
59	1	somp do private(imp1,imp2,v21,dist,ddist,ddist2,for, &	75	2 p	for = (coef_bd(1, ibd) + 2.0e0_PREC * coef_bd(2, ibd) * ddist2) * &
60	1	!\$omp& force,efull,iunit,junit,isys,istat)	76	2	(-2.0e0_PREC * ddist / dist)
		<<< Loop-information Start >>>	77	2	<pre>!ocl simd_redundant_vl(3)</pre>
		<<< [OPTIMIZATION]	1		<<< Loop-information Start >>>
		<<< SOFTWARE PIPELINING	1		<<< [OPTIMIZATION]
		<<< Loop-information End >>>	1		<<< SIMD(VL: 4)
61	2 p	do ibd = ksta, kend	1		<<< FULL UNROLLING
62	2		1		<<< Loop-information End >>>
63	2 p	imp1 = ibd2mp(1, ibd)	78	2 p	1v force(1:3) = for * v21(1:3)
64	2 p	imp2 = ibd2mp(2, ibd)	79	2	locl simd_redundant_vl(3)
65	2		80	2 p	1v force_mp(1:3, imp1) = force_mp(1:3, imp1) - force(1:3)
66	2	! write(*,*) "fj*** imp1=",imp1,"imp2=",imp2	81	2	!ocl simd_redundant_vl(3)
67	2	!ocl simd_redundant_vl(3)	82	2 p	$1v$ force_mp(1:3, imp2) = force_mp(1:3, imp2) + force(1:3)
		<<< Loop-information Start >>>	83	2 p	enddo
		<<< [OPTIMIZATION]	84	1	\$0mp end do nowait
		<<< <u>SIMD(VL: 4)</u>	85	1	
		<<< FULL UNROLLING	86	1	else <u> く 手動ルーファンスイッチンク</u>
		<<< Loop-information End >>>	L		
68	2 p	1v v21(1:3) = xyz_mp_rep(1:3, imp2,irep) - xyz_mp_rep(1:3,			
imp1,irep)					
69	2				
70	2 p	dist = $sqrt(v21(1)^{**}2 + v21(2)^{**}2 + v21(3)^{**}2)$			
71	2 p	ddist = dist - bd_nat(ibd)			
72	2 p	ddist2 = ddist**2			
73	2				

force_bondのチューニングの効果

FUjits

■実行時間内訳の比較

■ チューニング効果 (#) タイマー(gettod)の経過時間から

Original	Tune	向上率
0.4509秒	0.4120秒	9.4%

1 命令コミットのコストは少し改善

- → ループ内の配列式をSIMD化したので命令数が 減少した。
- ② 命令スケジューリングで改善できる部分のSWPに よる効果が小さい
 - SWPに必要な回転数:44
 - (コンパイラメッセージから)
 - 実際のループ回転数:約900

force_bondのSWPの効果

■SWPの効果が小さい = 命令を重ねられていない原因

■ループ最後のインダイレクトアクセスのあるリダクション演算部に対して、 コンパイラは依存関係を見切れず、逐次スケジューリングになっている と考えられる。

792locl simd_redundant_vl(3)802p1v812iocl simd_redundant_vl(3)822p1v602p1v70101081210822p1v701010822p1v7110107210107310741075

■しかし、データには重なりがあるため、!OCL NORECURRENCEが使えない

fj*** imp1= 1 imp2= 2 fj*** imp1= 1 imp2= 3 fj*** imp1= 3 imp2= 4 fj*** imp1= 4 imp2= 5 fj*** imp1= 4 imp2= 6 fj*** imp1= 6 imp2= 7 fj*** imp1= 7 imp2= 8 fj*** imp1= 7 imp2= 9 fj*** imp1= 9 imp2= 10 fj*** imp1= 10 imp2= 11

データに重なりが無いようなレイアウトにすることで コンパイラ最適化(SWP)の効果を最大限に引き出せる と考える

- FX100とSkylakeの5~7.4倍の性能差の分析
 - ■タイマールーチンの置換えにより、性能差は3.4~6.5倍
 - ■さらに、ピーク演算性能の差を考慮すると、その差は、1.7~3.3倍
 - FX100では、PA情報の採取から、命令数と演算/データアクセス待ちがボトル ネックとなっていた。

■高速化の検討

- ■手動ループアンスイッチングと!ocl simd_redundant_vlの指定により、 SIMD化/SWP化を促進することで、約10%性能が改善した。
- ■インダイレクトアクセスのデータに対して、データの重なりがないようレイアウトを変更できれば、より最適化の効果を得ることができると考える。

■ 残り2ルーチンに対して

- ■_force(bond)との一番の違いはcycle文があること。
- cycle文直前でループ分割し、後半のループに対して、_force(bond)と同様の ___チューニングをすることが可能

FUJTSU

shaping tomorrow with you

2019/2/25 SS研メニーコア時代のアプリ性能WG 第9回会合

生体分子粗視化シミュレータCafeMol タイマーとローカルな力のSIMD化

検崎博生 理研 情報システム部

概要

- ・粗視化モデルとCafeMolについて
 - •生体分子シミュレーションと粗視化
 - •CGタンパク質/DNAモデル
 - •計算方法と並列化
- •タイマーによるオーバーヘッド
 - mpi_wtime, system_clock, gettod
- •1ノードでのMPI並列数とスレッド並列数
- ローカルな相互作用のSIMD化
 - ボンド長とボンド角相互作用
 - OpenMPのスレッド並列のチャンクサイズを変更
Model

- CafeMol H.Kenzaki, et al,
 - J. Chem. Theor. Chem. (2011)
- Protein
 - AICG2+ model W Li, et al PNAS (2012)
 - FLP model for disordered regions in X-ray structure
 - Knotts et al, J. Chem. Phys. (2007)

CafeMol

DNA3SPN.1 model

今回の計算対象と計算方法

- •計算対象
 - ヌクレオソーム1個の系:<u>1,854粒子</u>
- •計算方法
 - ネイバリングリストを作っておく
 - ローカルな相互作用は最初に作っておく
 - それ以外は100stepに1回更新
 - MPIとOpenMPでネイバリングリストを分割して並列計算
 - プロセスとスレッド毎に力を保存して、最後に通信を行い 足し合わせる
 - 速度や座標のアップデートは全プロセスで同じものを行う。

ネイバリングリストの例 (2体の相互作用)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
i	1				2		3			4		5			6		7		8
j	2	4	7	9	5	8	4	5	9	7	8	6	7	9	8	9	8	9	9

タイマーの比較 nucleosome (10⁵step, 100mM)

- FX100 1 node: SPARC64 XIfx (1.975GHz, 32 cores, 1 CPU/node)
- コンパイラは、Fujitsu Fortran Compiler 2.0.0-07
- 最適化オプションは-Kopenmp,fast,parallel,ocl,optmsg=2 -Qa,m,p,t,x
- •1/ード(32コア)で2MPI並列X16スレッド並列で実行

	FX100(32 cores) mpi_wtime	FX100(32 cores) system_cloc	FX100(32 cores) gettod
force	38.33	34.92	34.94
_force(comm)	6.12	6.15	6.19
_force(local)	10.42	8.72	8.68
force(bond)	0.48	0.42	0.38
force(bangle)	1.54	1.39	1.41
_force(go)	1.43	1.31	1.30
_force(pnl)	11.70	11.55	11.51
_force(ele)	5.87	5.69	5.68
оре	60.52	53.03	52.75
comm	6.75	6.60	6.65
main_loop	67.27	59.62	59.40

mpi_wtimeはオーバーヘッドが大き過ぎる。 system_clockとgettodは同程度。

FX100での性能測定 nucleosome (10⁵step, 100mM)

- FX100 1 node: SPARC64 XIfx (1.975GHz, 32 cores, 1 CPU/node)
- コンパイラは、Fujitsu Fortran Compiler 2.0.0-07
- 最適化オプションは-Kopenmp,fast,parallel,ocl,optmsg=2 -Qa,m,p,t,x
- •1/ード(32コア)でMPI並列数X16スレッド並列数=32に固定して実行

1nodeでは2MPI並列x16OpenMP並列のときに一番高い性能

force(bond)の計算方法

```
1. ネイバリングリストiele2mp(2, lele)を各プロセスで計算
i < jとなるペアだけを格納
2. simu_force.F90
                                       スレッド毎にforce_mpの
!$omp parallel private(tn)
                                       異なる領域を用意
call simu_force_bond(force_mp_l(1, 1, tn))
3. simu_force_bond.F90
!$omp do private(....)
                                                                ibd=1 imp1=1 imp2=2
                                                                ibd=2 imp1=1 imp3=3
do ibd = ksta, kend
                                                                ibd=3 imp1=3 imp2=4
  imp1 = ibd2mp(1, ibd)
                                                                ibd=4 imp1=4 imp2=5
  imp2 = ibd2mp(2, ibd)
                                                                ibd=5 imp1=4 imp2=6
  v21(1:3) = xyz_mp_rep(1:3, imp2, irep) - xyz_mp_rep(1:3, imp1, irep)
                                                                ibd=6 imp1=6 imp2=7
  dist = sqrt(v21(1)^{*}2 + v21(2)^{*}2 + v21(3)^{*}2)
  ddist = dist - bd_nat(ibd)
  ddist2 = ddist^{*2}
  for = (coef_bd(1, ibd) + 2.0e0_PREC * coef_bd(2, ibd) * ddist2) * (-2.0e0_PREC * ddist / dist)
  force(1:3) = for * v21(1:3)
  force_mp(1:3, imp1) = force_mp(1:3, imp1) - force(1:3)
  force_mp(1:3, imp2) = force_mp(1:3, imp2) + force(1:3)
end do
                                       force_mpへの足しこみが
!$omp end do nowait
                                       原因でSIMD化できない
```

force(bond)のSIMD化

- •方針
 - force_mpへの足し込みをループ内で被らないようする。
 - force_mpがスレッド毎に別なので、各スレッド毎に被らないようする。
 - •ボンド長の場合、ネイバリングリストで3つ以上離れていれば被らない。
 - よって、<u>チャンクサイズを1にし、スレッド並列数が3以上</u>であれば、SIMD化 が可能なはず。
- tune1
 - 今回のモデルに関係ない部分を削除しておく。
 - チェック用のifなど、if文は全て削除する。
- tune2
 - !omp do schedule(static,1)としてチャンクサイズを1に設定する。
 - •この段階では、メモリアクセスが遅くなると予想できる。
- tune3
 - !ocl norecurrence()を付けてSIMD化を行う。
- ボンド各force(bangle)についても同様にSIMD化を行うが、FLPモデル については、中で関数を読んでいるのでSIMD化に失敗。
 - 他の相互作用でもif文を外せないなどSIMD化できないことはよくある。

force(bond)とforce(bangle)のSIMD化

- tune1: 今回の計算に使わない部分を削除しソースを単純化
- tune2: OpenMPのスレッド並列の順序を変更
- tune3: !ocl norecurrence()を付けてSIMD化
- コンパイルオプションは-Kopenmp,fast,parallel,ocl,optmsg=2 -Qa,m,p,t,x
- •1/-ド(32コア)で2MPI並列X16スレッド並列で実行

	FX100(32 cores) tune1	FX100(32 cores) tune2	FX100(32 cores) tune3
force	34.90	35.44	35.00
_force(comm)	6.18	6.21	6.22
_force(local)	8.71	8.99	8.79
force(bond)	0.37	0.62	0.51
force(bangle)	1.42	1.44	1.06
_force(go)	1.27	1.29	1.29
_force(pnl)	11.52	11.65	11.47
_force(ele)	5.68	5.67	5.68
ope	52.80	53.24	52.80
comm	6.65	6.66	6.65
main_loop	59.44	59.90	59.44

bondはSIMD化の副作用の方が大きく遅くなった。 bangleはSIMD化により30%程度速くなった。

まとめ

- •Timerの比較
 - MPI_WTIMEはオーバーヘッドが大きい。
 - system_clockとgettodは同程度。
- MPI並列とOpenMP並列の兼ね合い。
 - •1ノードでは、2MPI並列x16スレッドの時に一番高い性能。
- •FX100でのローカルな相互作用のSIMD化
 - •スレッド並列の割当を変えることにより、SIMD化に成功。
 - 複雑な力場を使う場合はif文や関数呼び出しを含むので難しい。
 - •性能の向上は限定的。
 - •スレッド並列の割当を変えるオーバーヘッドとの兼ね合い。

名古屋大学情報基盤センター 荻野 正雄

3.4.1 はじめに

ADVENTURE とは、設計用大規模計算力学システム開発プロジェクト(通称 ADVE NTURE プロジェクト、https://adventure.sys.t.u-tokyo.ac.jp/)において開発 されているオープンソース CAE システムである。大規模メッシュを用いて自然 物や人工物を丸ごと詳細にモデル化し、多様な並列分散計算機環境のもとで固 体の変形や熱・流体の流れ等の力学解析から可視化、設計最適化までを行える 特徴がある。無料公開されていることもあり、教育・研究から産業応用まで幅 広く利用されているソフトウェアである。ここでは、有限要素法による3次元 電磁場解析モジュール ADVENTURE_Magnetic を取り上げる。電磁場には静磁場、 低周波電磁場、高周波電磁場など様々な種類があり、対象とする問題の特性に 応じて Maxwell 方程式から偏微分方程式を導出する。それらに辺要素有限要素 法を適用することで、様々な線形方程式が得られる。例えば、時間調和渦電流 問題や高周波電磁場問題では複素対称線形方程式を解くことになる。しかし、 係数行列が悪条件になりやすく、共役直交共役勾配(COCG)法などの反復解法で 高い精度の収束解を得ることが困難な場合がある。そこで現在、IEEE 754-2008 が規定する四倍精度浮動小数点数や D.H. Bailey や K. Briggs などが提案した 倍精度数2つを用いる疑似四倍精度数などの多倍長精度演算に着目し、反復計 算における丸め誤差を低減させることで、電磁場解析を効率化することを目指 している。今回は、富士通 FX100 を含むいくつかの環境において、任意精度・ 多倍長精度ライブラリの性能評価を行った。また、ライブラリ利用における知 識や技術の蓄積と共有を行い、さらに富士通 TCS 環境の課題を明らかにする。

3.4.2 任意精度・多倍長精度演算ライブラリの概要

表 3.4.1 に今回用いた任意精度・多倍長精度演算ライブラリ、実数及び複素 数の浮動小数点数型を示す。

Library	Precision	Real data type	Complex data type	
C data type	extended	long double	long double _Complex	
Fortran data type	quadruple	real(kind=16)	complex(kind=16)	
libquadmath	quadruple	float128	complex128	
Intel's _Quad	quadruple	_Quad	complex<_Quad>	
QD	pseudo-quad	dd_real	complex <dd_real></dd_real>	
Fujitsu's fast_dd	pseudo-quad	dd_real	complex <dd_real></dd_real>	

表 2.9.1 主な任意精度・多倍長精度浮動小数点数

ARPREC	arbitrary	mp_real	mp_complex
exflib	arbitrary	exfloat	complex <exfloat></exfloat>
MPFR/GMP	ombitnomu	mpfr_t	-
MPC	arbitrary	_	mpc_t

四倍精度としては、Fortran データ型、GCC 拡張である C 言語の libquadmath ライブラリ(https://gcc.gnu.org/onlinedocs/libquadmath/)、Intel コンパイ ラ拡張である C 言語の_Quad を用いる。libquadmath ライブラリは GCC 4.6.0 以 降から利用可能である。QD ライブラリ(http://crd-legacy.lbl.gov/~dhbailey /mpdist/)は倍精度浮動小数点数を 2 つ用いる double-double 形式の疑似四倍精 度演算ライブラリである。富士通 fast_dd は、富士通 TCS に含まれる高速 4 倍 精度基本演算ライブラリであり、QD と同じく double-double 形式の疑似四倍精 度である。比較用として、C データ型の拡張倍精度、任意精度演算ライブラリで ある ARPREC(http://crd-legacy.lbl.gov/~dhbailey/mpdist/)、exflib(http:/ /www-an.acs.i.kyoto-u.ac.jp/~fujiwara/exflib/)、並びに MPFR(http://www. mpfr.org/)とその複素数版である MPC(http://www.multiprecision.org/)を用 いる。

ここで、Intel _Quad、QD、fast_dd、並びに exflib では複素数の基本演算機 能が提供されていないため、C++複素数テンプレートクラスと組み合わせて用い た。

また、任意精度・多倍長精度演算ライブラリは利用マニュアルが十分でない ことが多く、サンプルコードからプログラミング方法を学ぶ必要がある。今回 作成したいくつかのプログラムをスライド 1~8 に示す。

3.4.3 測定環境

性能測定には、汎用 PC、名古屋大学の FX100、及び名古屋大学の CX400 を使用した。それぞれの環境における CPU、OS、コンパイラを表 2.9.2 に示す。また、それぞれの環境において性能測定を行うことができたライブラリを表 2.9.3 に示す。性能測定できなかった理由は次の通りである。

- libquadmathは、FX100(fcc)は富士通コンパイラのため、FX100(gcc)はgcc 6.3.0だが当該ライブラリ未提供のため、CX400はgcc-4.4.7のため
- Intel's _Quad は、PCではライセンス未導入のため、FX100 は SPARC64 プロ セッサのため
- fast_dd は、FX100 のみ利用可能であるため
- ・ exflib は x64 バイナリ版のみを利用したため

Name	CPU	0S	Compiler	Site
РС	Intel Core i7-8650U (Kabyla	Ubuntu 18.04	gcc-7.3.	-
	ke-R)	TLS	0	
FX100(fc			fcc-2.0.	Nagoy
c)	Entitor SDADCGA VIE		0	а
FX100(gc	FUJIISU SPARCO4 AIIX	AIC 05 2.1.1	gcc-6.3.	Nagoy
c)			0	а
CV 400	Intel Xeon E5-2697v3 (Haswe	DUEL	icc-14.	Nagoy
CX400	11-EP)	КПЕС	0.3	а

表 3.4.2 実験に用いた計算機とソフトウェア

表 3.4.3 使用ライブラリと計算環境における利用可否

Library	Version	PC	FX100(fcc)	FX100(gcc)	CX400
libquadmath	(gcc-4.6.0 or la ter)	0	_	_	-
Intel's _Quad	icc-14.0.3	_	-	_	0
QD	2.3.20	0	\bigcirc	0	\bigcirc
fast_dd	2.3.2	-	0	0	-
ARPREC	2.2.19	0	\bigcirc	0	\bigcirc
exflib	x64-bin-20180620	0	-	-	\bigcirc
GMP	4.0.1				
MPFR	6.1.2	\bigcirc	0	\bigcirc	0
MPC	1.1.0				

3.4.4 計算精度に関する数値実験

a) 問題設定

実数を係数にもつ2次方程式 $ax^2 + bx + c = 0$ を考える。この式は解の公式により、 $x_1 = (-b - \sqrt{b^2 - 4ac})/(2a)$ と $x_2 = (-b + \sqrt{b^2 - 4ac})/(2a)$ で得られる。このとき、桁落ちしやすい係数a = 1.01、b = 2718281、c = 0.01を用いて x_2 を計算したときの精度を評価する。この問題では加減算、乗算、除算、平方根の計算を行う。

真の解は $x_2 = -3.678795532912165323920499 \times 10^{-9}$ である。比較として、exfli b ライブラリで 100 桁精度で計算した結果は $\tilde{x}_2 = -3$.

6787955329121653239204992803347 × 10^{-9} であった。

b) 実験結果

スライド9に実験結果を示す。任意精度演算ライブラリについては、4倍精度 相当となるように計算精度を設定している。表の結果に書かれている数値は、 太字・下線のところまで正しく計算できていることを表している。表より、普 通に倍精度数で計算したのでは小数点以下1桁までしか正しく計算できていな いことが分かる。これに対し、疑似四倍精度のQDとfast_ddは16~17桁まで 正しく計算できており、FortranやCのlibquadmathといった四倍精度の結果(1 8~19桁)に近い計算精度が得られている。これより、名大FX100環境などにお いて、多倍長精度計算ライブラリを正しく利用できていることが示された。

ここで、x86 系である PC の環境では long double 型は小数点以下 3 桁程度の 精度で拡張倍精度として倍精度より高い精度で計算しているようであるがこの 問題にとっては精度不足である。一方、FX100 の long double 型は四倍精度相当 の結果が得られている。long double 型変数が占めるサイズを調べたところ 128 ビットであり、きちんと 128 ビット分の精度が出ていることになる。富士通の C 言語処理系でとりあえず四倍精度数を使いたい場合に有用である。

また、Intel's _Quad は倍精度と同じ程度の結果となった。これは、平方根を 含め数学関数の四倍精度版が提供されていなかったためである。実験当時の In tel コンパイラの説明として_Quad は実験的なものと述べられていた。

なお、任意精度演算ライブラリの ARPREC と exflib は想定以上の精度が出て いるが理由は不明である。

3.4.5 計算時間に関する数値実験

a) 問題設定

以下のロジスティック写像を考える。

$x_{n+1} = ax_n(1 - x_n)$

a = 4とすると、 x_n は区間[0,1]全体で非周期に変動するカオスとなることが知られている。このとき、初期値 $x_0 = 0.7501$ とし、nが 10^6 になるまで計算したときの計算時間を評価する。また、 x_n を実数としたとき、複素数としたときの2ケースを評価する。この問題では、乗算と減算のみを行う。

b) 実験結果

スライド 10 と 11 に実数と複素数のときの実験結果をそれぞれ示す。表にお いて、QD(C++)とQD(C)はそれぞれプログラム記述言語が C++と C であることを 表している。QD ライブラリ自体は C++で記述されており、C++プログラムから利 用する場合向けに四則演算等の演算子オーバーロードをしている一方で、C プロ グラム向けに関数コールでの利用も可能となっている。C++であればプログラム は書きやすいが、計算時間の観点で最適なコードが生成されない可能性がある。 そこで比較のために 2 つの実装を行った。

スライド 10 より、PC では QD (C++)が最速であった。これは C++の最適化が十 分に行えているのだと推測される。また、QD (C++)による疑似四倍精度演算は倍 精度演算に比べて 3 倍遅い程度であった。また、疑似四倍精度演算は四倍精度 演算よりも 3 倍程度速く、前の実験で計算精度が同程度であったことから、実 用性が高いと言える。FX100 (fcc)では、同じく QD (C++)が最速であったが、倍精 度演算よりも7倍程度の計算時間であり、C++コードのさらなる最適化が望まれる。CX400ではIntel's_Quadが最速であり、QD(C++)もほぼ同程度であった。

次に、ターゲットとする複素数演算の性能を、スライド 11 で見てみる。実数 のときと異なり、全ての環境において QD(C)が最速となった。よって、QD(C)の 利用が良いように思えるが、プログラム例のスライド4を見てわかるように、Q DライブラリをC言語から複素数で利用する場合は複素数の四則演算などの関数 を自作する必要があり、さらにプログラミングコストが高くなり、可搬性も損 なわれる。C++の演算子オーバーロードを利用すれば、疑似四倍精度数であって も、複素数であっても、z=x+yのように記述できる。しかし、実際には、実部と 虚部それぞれの加算に展開され、加算は疑似四倍精度数の加算になり、その加 算 1 回あたりでは Knuth による加算の無誤差変換に基づいて倍精度数の加減算 が11回行われる。つまり、z=x+yという記述は22回の演算に展開される。z=x *yは100回以上、z=x/yは250回以上の演算にもなる。実際のプログラムでは もっと長い計算式が書かれ、for ループブロック内であればループボディが非常 に長くなることを意味する。スライド 14 と 15 に、QD(C++)を用いた疑似四倍精 度の密行列ベクトル積コードをFX100の富士通C/C++コンパイラでコンパイルし たときの最適化メッセージを示す。これより、SIMD 化もソフトウェアパイプラ イン化も行われていないことが分かる。コンパイラによる最適化が望まれる。 なお、インライン展開に関するメッセージが大量にでてくるため、メッセージ を調査しづらい問題があった。

また、名大 FX100 において富士通 C/C++コンパイラの 32 レジスタ制限版を用 いた実験も行った。その結果をスライド 12 と 13 に示す。このケースでは通常 環境と性能差はなかった。しかし、上述したように現状でもコンパイラにはも う少し最適化を頑張ってほしいため、32 レジスタ制限環境の影響を受けないか どうかは判断できないと言える。

3.4.6 複素対称線形方程式の数値実験

複素対称線形方程式における多倍長精度計算の有効性を評価する数値実験を PC 環境で行った。疎行列データベース UF Sparse Matrix Collection で公開さ れている 2 つの小規模行列を用いて、IC 前処理付き COCG 法で解いた実験結果を スライド 16~18 に示す。これより、疑似四倍精度数を用いると倍精度数の場合 と比べて反復回数を削減できることが分かる。このケースでは総計算時間は倍 精度の場合が高速であったが、反復回数の削減効果は問題依存のため、その効 果が大きい場合であれば、倍精度数よりも疑似四倍精度数を使う方が高速にな る可能性があると言える。

スライド19と20に、高周波電磁場の有限要素解析で得られた複素対称行列 による数値実験結果を示す。このケースでは、わずかにであるが疑似四倍精度 が高速であった。

3.4.7 富士通 fast_dd について

富士通 TCS に含まれる富士通 fast_dd は QD と同様に double-double 形式の疑 似四倍精度演算機能を提供するライブラリであるが、スライド 10~13 に示すよ うに計算時間の面では QD ライブラリよりも低い性能となっている。しかし、富 士通 fast_dd は 2 要素ずつ同時に計算するマルチ関数やベクトル関数を提供し ており、それらが利用できるケースでの性能改善が目的の 1 つにある。前述の 計算は単純な漸化式であったことからマルチ関数等の利用は行っていない。そ こで、第9回 WG において富士通側報告として行われたマルチ関数・ベクトル関 数の性能評価例をスライド 21~23 に示す。これより、複数要素の同時計算が行 える場合では fast_dd は QD よりも高い性能が期待できることが明らかになった。

3.4.8 HOWTO

今回の数値実験を通して得られた多倍長精度演算ライブラリの利用に関する 知識について、HOWTOとしてまとめ、知識共有を行う。得られた知識は以下の通 りである。

- ① 任意精度・多倍長精度演算ライブラリには、計算順序の入れ替えを行うと計算精度が低下するものがある。よって、例えば富士通 C/C++コンパイラでは "-Keval"オプションは指定すべきではない。"-Keval"は"-Kfast"に含まれているので"-Kfast"の利用も避けるべきである。しかし、環境によっては、コンパイラの標準オプションとして"-Kfast"が指定されている場合があるので注意が必要であり、"-Knoeval"を使うのが望ましい。
- ② 富士通 C/C++処理系で任意精度・多倍長精度演算ライブラリを利用するときは、コンパイラのインライン展開オプション"-x-"を指定した方が高速となる。
- ③ 富士通 C/C++コンパイラで QD ライブラリをビルドするときは、コンパイラ に"-Kfp_contract"オプションを指定すれば FMA 命令をきちんと使ってくれ る。①、②とあわせて、"-O3 -Kfp_contract -Knoeval -x-"が基本となる。
- ④ 名大 FX100 の gcc-6.3.0 環境では FMA 命令を使うよう指定して QD ライブラ リをビルドすると、計算結果が誤ったものになる。SPARC64 XIfx の正しい F MA 命令が出されないのだと思われる。また、libquadmath はビルドされてい ない。
- ⑤ 富士通 fast_dd は SSL II の一部として提供されているが、GCC など富士通 T CS 以外のコンパイラで SSL II ライブラリを使うときは"-SSL2"ではリンク

できない。例えば今回指定したのは、インクルードパス指定は"-I/opt/FJS Vmxlang/include"、リンク指定は"-L/opt/FJSVmxlang/lib64 -lssl2mtfour simd_prexi -lssl2mtfoursimd_com -lssl2mtfoursimd_postxi -lfj90i -l fj90fmt

-lfj90f -lfj90rt -lfjrtcl -ltrt -L/usr/lib64 -lm -lelf"である。Inte l MKL Link Line Advisorのようなリンク方法を調べる手助けがあるのが 望ましい。

- ⑥ 富士通 C/C++処理系では long double 型は 128 ビットの 4 倍精度浮動小数点数である。
- ⑦ 任意精度・多倍長精度の浮動小数点数に定数を代入するときは、定数の精度に気を付ける必要がある。例えばQDライブラリでは文字列定数を使えば、疑似四倍精度数に変換した上で代入してくれる。
- ⑧ 富士通 fast_dd は疑似四倍精度定数の指定方法が不明だが、富士通 C/C++処 理系のときは4倍精度である long double 型定数で代用できる。
- ⑨ 任意精度・多倍長精度演算ライブラリを使うときは、出力関数が対応しているかも気にする必要がある。

3.4.9 まとめ

今回は将来的に ADVENTURE へ多倍長精度演算を組み込むことを目的に、任意 精度・多倍長精度演算ライブラリを名大 FX100 環境に移植し、数値実験によっ て性能評価を行った。当初は、想定する計算結果が得られないことが多く、丸 め回数が少ない FMA 命令を使えているか、コンパイラによる計算順序入れ替え は起こっていないか、高精度な定数はどう指定するか、高精度な数学関数はあ るのか、あたりを確認していけば正しく移植できることが見えてきた。疑似四 倍精度数かつ複素数となると1回の四則演算あたりの計算量が多く、それを含 む D0 ループ / for ループの最適化は難しいと思われるが、ポスト京のコンパイ ラが効率良いコードを出してくれることに期待する。また、多倍長精度計算の 専門家との協調作業が必要と思われるが、そのためには大量に出力されるコン パイラの最適化メッセージの改善も望まれる。

複素数版プログラム例 (FORTRAN)

複素数版プログラム例 (libquadmath, C)

複素数版プログラム例 (QD, C++)

複素数版プログラム例 (QD, C)

複素数版プログラム例 (Fujitsu fastdd, C++)

複素数版プログラム例 (ARPREC, C++)

```
#include <iostream>
#include <iomanip>
#include <stdlib.h>
#include <arprec/mp complex.h>
using namespace std;
int nr digits = 32;
                      精度の設定
int main(void)
 mp::mp init(nr digits);
                            任意精度変数の宣言
 mp complex x2;
 mp complex a("1.01E+0","0E+0");
                                         任意精度定数の代入
 mp complex b("2718281.0E+0","0E+0");
 mp complex c("0.01E+0","0E+0");
 x2 = (-b+sqrt(b*b-4*a*c))/(2*a);
  cout << "x2= " << scientific << setprecision(31) << x2.real << "</pre>
" << x2.imaq << "¥n";
 mp::mp finalize();
```

複素数版プログラム例 (exflib, C++)

複素数版プログラム例 (MPC, C++)

計算精度に関する数値実験結果

- 最適化オプション "-O3", MPFRの丸めモードは最近接偶数丸め
- 任意精度ライブラリは4倍精度相当で計算

	言語	精度	結果
double	С	倍	- <u>3.6</u> 88406236100904979616609403840e-09
long double	С	拡張倍	- <u>3.678</u> 838531936214554367889299446e-09
long double@FX	С	128ビット	-3.678795532912165323960311671534e-09
real(kind=16)	F90	4倍	-3.678795532912165323960311671534e-09
libquadmath	С	4倍	- <u>3.678795532912165323</u> 7603627688244e-09
_Quad	C++	4倍	- <u>3.6</u> 884062361009050123322488651663e-09
QD	C++	疑似4倍	- <u>3.67879553291216532</u> 2960567157986e-09
fast_dd	C++	疑似4倍	-3.678795532912165394583236142940e-09
ARPREC	C++	32桁	- 3.6787955329121653239204992803347 e-09
exflib	C++	32桁	-3.678795532912165323920499457919e-09
MPFR	С	106ビット	-3.6787955329121653309585232663659e-09

計算時間[s]に関する実験結果 (実数)

	言語	PC (gcc)	FX100 (fcc)	FX100 (gcc)	CX400 (icc)
double	С	0.0105	0.0116	0.00546	0.0060
long double	С	0.0110	0.7882	0.781	0.0095
real(kind=16)	F	0.1050	0.0000	0.781	0.0746
libquadmath	С	0.0921	N/A	N/A	N/A
_Quad	C++	N/A	N/A	N/A	<u>0.0714</u>
QD (C++)	C++	<u>0.0304</u>	<u>0.0732</u>	0.0333	0.0798
QD (C)	С	0.0409	0.2884	<u>0.0221</u>	0.1364
fast_dd	C++	N/A	0.1441	0.144	N/A
ARPREC	C++	0.8968	6.6298	7.493	0.6934
exflib	C++	0.0856	N/A	N/A	0.1060
MPFR	С	0.3329	1.3545	0.597	0.3939

計算時間[s]に関する実験結果 (複素数)

	言語	PC / gcc	FX100 / fcc	FX100 / gcc	CX400 / icc
double	С	0.0227	0.0234	0.0228	0.0087
long double	С	0.0457	1.4669	1.288	0.0155
complex(kind=16)	F	0.3250	0.0000	1.453	0.2133
libquadmath	С	0.2141	N/A	N/A	N/A
_Quad	C++	N/A	N/A	N/A	0.2004
QD (C++)	C++	0.1349	0.3232	0.342	0.1552
QD (C)	С	<u>0.1334</u>	<u>0.2862</u>	<u>0.241</u>	<u>0.1472</u>
fast_dd	C++	N/A	0.7464	0.803	N/A
ARPREC	C++	1.5565	13.6597	5.515	1.3135
exflib	C++	0.2591	N/A	N/A	0.2864
MPC	С	0.1928	0.5868	0.422	0.2342

計算時間[s]に関する実験結果2 (実数)

	言語	PC / gcc	FX100 / fcc	FX100 / fcc(32reg)	FX100 / gcc
double	С	0.00679	0.00548	0.00546	0.00546
long double	С	0.00645	0.788	0.785	0.781
real(kind=16)	F90	0.0730	0.313	0.324	0.781
libquadmath	С	0.0636	N/A	N/A	N/A
QD (C++)	C++	<u>0.0285</u>	0.0333	0.0322	<u>0.0692</u>
QD (C)	С	0.0323	<u>0.0221</u>	<u>0.217</u>	0.0851
fast_dd	C++	N/A	0.144	0.143	0.155
ARPREC	C++	0.408	7.493	7.247	2.90
exflib	C++	0.0727	N/A	N/A	N/A
MPFR	С	0.166	0.597	0.574	0.469

計算時間[s]に関する実験結果2(複素数)

	言語	PC / gcc	FX100 / fcc	FX100 / fcc(32reg)	FX100 / gcc
double	С	0.00542	0.0205	0.0205	0.0228
long double	С	0.0248	1.455	1.452	1.288
complex(kind=16)	F90	0.186	0.787	0.584	1.453
libquadmath	С	0.138	N/A	N/A	N/A
QD (C++)	C++	0.0579	0.173	0.128	0.342
QD (C)	С	<u>0.0569</u>	<u>0.112</u>	<u>0.113</u>	<u>0.241</u>
fast_dd	C++	N/A	0.743	0.733	0.803
ARPREC	C++	0.704	13.549	13.801	5.515
exflib	C++	0.205	N/A	N/A	N/A
MPC	С	0.132	0.528	0.487	0.422

FX100における疑似四倍精度実行列ベクト ル積演算(QD(C++))の最適化メッセージ例

```
for (i = 0; i < n; i++) {</pre>
38
39
      i
                    q[i] = 0.0;
40
                #pragma loop noalias
                                                    ·SIMD化されず
                    for (j = 0; j < n; j++) {
41
            2
42
      i
            2
                      q[i] += A[i*n+j] * p[j];
                                                    ・SWPLされず
            2
43
                                                    ・ループ展開2倍
44
. . .
 jwd6101s-i "logisticmap real gd guad.cpp", line 41: SIMD conversion is not
applied because a statement that prevents SIMD conversion exists.
  jwd8670o-i "logisticmap real gd guad.cpp", line 41: This loop is not
software pipelined because the loop contains a branch instruction which is
not for loop iteration.
  jwd8202o-i "logisticmap_real_qd_quad.cpp", line 41: Loop unrolling
expanding 2 times is applied to this loop.
  jwd8101o-i "logisticmap real qd quad.cpp", line 42: Inline expansion is
applied to the user defined function '_ZmlRK7dd_realS1_'.
  jwd8101o-i "logisticmap_real_qd_qu />,=,
                                          ′ン展開のメッセージが大量にでる
applied to the user defined function
```

FX100における疑似四倍精度複素行列ベク トル積演算(QD(C++))の最適化メッセージ例

```
for (i = 0; i < n; i++) {</pre>
40
41
      i
                     a[i] = c zero;
42
                 #pragma loop noalias
                                                       ·SIMD化されず
                     for (j = 0; j < n; j++) {
43
      i
                       q[i] += A[i*n+j] * p[j];
                                                      ・SWPLされず
44
45
                                                       ・ループ展開なし
46
. . .
 jwd6101s-i "logisticmap complex gd guad.cpp", line 43: SIMD conversion is
not applied because a statement that prevents SIMD conversion exists.
  jwd8670o-i "logisticmap complex gd guad.cpp", line 43: This loop is not
software pipelined because the loop contains a branch instruction which is
not for loop iteration.
  jwd8101o-i "/opt/FJSVmxlang/bin/../include/c++/std/stl/ string io.c", line
44: Inline expansion is applied to the user defined function
' ZNKSt8ios base5flagsEv'.
  jwd8101o-i "logisticmap_complex_gd_guad.cpp", line 44: Inline expansion is
applied to the user defined function '_ZStmlI7dd_realESt7complexIT_ERKS3_S5_'.
  jwd8101o-i "logisticmap complex gd guad.cpp", line 44: Inline expansion is
applied to the user defined function '_ZNSt7complexI7dd_realEpLERKS1_'.
```

Numerical experiments on the convergence of the iterative method

• Solving complex symmetric linear systems

$$A\mathbf{x} = \mathbf{f}$$

- coefficient matrices (from the SuiteSparse Matrix Collection)
 - dwg961b: n= 961, num. of nonzero= 19,591
 - **qc2534**: n= 2,534, num. of nonzero= 463,360 an electromagnetic field problem and a complex symmetric matrix
- $\mathbf{f} = A \times (1 + i, 1 + i, ..., 1 + i)^T$
- Iterative methods
 - COCG (Conjugate Orthogonal Conjugate Gradient) method w/ incomplete Cholesky preconditioning
- Multiple-precision libraries
 - libquadmath (GCC 5.4.0), QD 2.3.17, ARPREC 2.2.18
- Computers
 - Intel Core i7-6500U / Ubuntu 16.04 TLS / gcc-5.4.0

Comparison of number of iterations with different precision arithmetic

Convergence history for dwg961b

Convergence history for qc2534

- "100digits" means 100 decimal digits of precision calculated by ARPREC as reference.
- In solving complex symmetric linear systems,
 - multiple-precision got faster convergence compared with double
 - (pseudo-)quadruple is enough precision

Comparison of calculation time with different precision arithmetic

Convergence criterion: 10⁻⁷

Matrix	Library	Precision name	Decimal digits	# of Iter.	Time [s]
dwg961b	non-use	double	15	1,058	0.480
	QD	pseudo-quadruple	32	479	<u>1.216</u>
	quadmath	quadruple	34	457	4.132
	ARPREC	pseudo-quadruple	32	383	32.503
qc2534	non-use	double	15	572	9.437
	<u>QD</u>	pseudo-quadruple	32	248	<u>20.841</u>
	quadmath	quadruple	34	249	73.272
	ARPREC	pseudo-quadruple	32	240	748.447

- QD is faster than GCC's libquadmath and ARPREC in total.
- QD takes at most 3 times longer than double precision in small-scale cases.

TEAM Workshop Problem 29

- Benchmark model for hyperthermia simulation
 - Problem size: 134,573
 - Frequency: 300 (MHz)
 - Relative permittivity of Phantom: 80.0
 - Electrical conductivity of Phantom: 0.52 (S/m)
- Linear solver
 - Iterative method: COCG w/ Symmetric SOR ($\omega = 1.05$) preconditioning
 - Convergence tolerance: relative residual norm < 10⁻⁷
- Computers
 - Intel Core i7-6500U / Ubuntu 16.04 TLS / gcc-5.4.0 sensing coil

Computational performance of 300 (MHz)

Precision	# of iter.	Time [hr.]
double	24,5105	5.78
pseudo-quadruple (QD)	43,598	<u>5.69</u>
quadruple (libquadmath)	38,643	14.09

4倍精度演算

■ IEEE 754-2008のbinary128形式
■ ソフトでエミュレーションするため低速

■ double-double形式

- 倍精度を2つ並べた形式
 - 倍精度演算器を使って計算できるためIEEE形式よりも高速
- ■加減乗算の演算方法は広く知られている
- doube-double形式の実装例
 - •フリーソフト: QDなど
 - 富士通: 高速4倍精度基本演算ライブラリ(以降fast_dd)
 - 他ベンダー
 - IBMでは4倍精度としてdouble-double形式をサポートするシステム有り
 - NEC : ASLQUAD
 - •この他に、ユーザ自身が実装する場合もあり
QDとfast_dd

■ QDの実装

- C++版はヘッダファイル内に演算が書かれており、インライン展開される
 - 翻訳時に最適化が適用されることで高速化を実現
- Fortran版は、wrapperのみでCの関数を呼び出している

■ 注意点

- C++版は、インライン展開されないと高速化されず、また、演算順序を変更する最適化が適用されると結果が正しくなくなる
- Fortranは1要素ずつ関数を呼び出すため高速化されない

■ fast_ddの実装

ユーザの指定する最適化オプションによって性能や結果に影響が出ることを 避けるため、インライン展開方式は採用しない

• 演算は基本的に1要素ずつ関数を呼び出すことで実現

- ■高速化のために、マルチ関数(2要素ずつ計算)・ベクトル関数(入出力が1次 元配列)を用意
- →マルチ関数・ベクトル関数を使用して頂〈ことを期待
 - 7/20ご報告の評価で使われたロジスティック写像は漸化式でベクトル関数が使えないためQDのC++版(インライン)が高速

FUÏTSU

実行性能

FUJITSU

加算の性能 FX100 1.5Ghz N=1024 (L1に乗るサイズ)

use fast_dd INTEGER::N TYPE(dd_real)::X(N),Y(N),Z(N) DO I=1,N Z(I)=X(I)+Y(I) END DO

マルチ関数、ベクトル関数は関数呼出し化した版を使用

		性能 mflops(注1)	備考
QD	C++	68.2	インライン、SWPLのみ
	Fortran	21.9	1要素ずつ関数呼出し
fast_dd 単体関数	C++	13.1	1要素ずつ関数呼出し
	Fortran	22.2	1要素ずつ関数呼出し
fast_dd マルチ関数	C++	43.0	2要素ずつ関数呼出し
	Fortran	114.0	2要素ずつ関数呼出し
fast_ddベクトル関数	C++	805.0	SIMD+SWPL
	Fortran	874.0	SIMD+SWPL

注1) double-double形式の加算1回を1flopとしたときの性能