## Ziegler-Natta heterogeneous catalysis: a Car-Parrinello study

Kiyoyuki Terakura<sup>a</sup> Michele Parrinello<sup>c</sup>, Mauro Boero<sup>b</sup>

<sup>c</sup>Research Institute for Computational Sciences, Agency of Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan and Tsukuba Advanced Computing Center (TACC), Tsukuba, Ibaraki 305-8568, Japan

<sup>c</sup>Swiss Center for Scientific Computing (CSCS), via Cantonale, Galleria 2, CH-6928 Manno, Switzerland and ETH Hoenggerberg HCI, CH-8093 Zurich (Switzerland) <sup>b</sup>JRCAT-ATP, 1-1-1 Higashi, Tsukuba, Ibaraki 305-0046, Japan



## Main interests

- Ziegler-Natta (ZN) catalysis is by far the most important industrial process in the production of polyolefins with high degree of stereoselectivity
- The reaction occurs at room temperature with a very high reaction rate and low amount of catalyst
- Experimental probes fail in recovering the microscopic picture due to the very fast reaction and the low percentage of active sites
- Quantum dynamical simulations can be a viable tool to study in an unbiased way and on affordable time scale active sites and the reaction pathway















































| Complexation and insertion energies for |
|-----------------------------------------|
| ethylene and propene                    |

| $\pi$ -complex                       | Insertion                                                                                                                      | Product                                                                                                                                                                                                                                                     |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (kcal/mol)                           | (kcal/mol)                                                                                                                     | (kcal/mol)                                                                                                                                                                                                                                                  |
| -8.4 <sup>a</sup> ,-6.5 <sup>b</sup> | +12.7 <sup>a</sup> ,+6.7 <sup>b</sup>                                                                                          | -5.8 <sup>a</sup> ,-23.3 <sup>b</sup>                                                                                                                                                                                                                       |
| -3.6 <sup>b</sup>                    | +10.5 <sup>b</sup>                                                                                                             | -16.7 <sup>b</sup>                                                                                                                                                                                                                                          |
| +5.6 <sup>b</sup>                    | +16.2 <sup>b</sup>                                                                                                             | (-1.0) <sup>b</sup>                                                                                                                                                                                                                                         |
| ite, <b>b</b> = 5-fold s             | ite                                                                                                                            |                                                                                                                                                                                                                                                             |
|                                      | $\pi\text{-complex}$ (kcal/mol) $-8.4^{\text{a}},-6.5^{\text{b}}$ $-3.6^{\text{b}}$ $+5.6^{\text{b}}$ ite, <b>b</b> = 5-fold s | $\pi$ -complex       Insertion         (kcal/mol)       (kcal/mol)         -8.4 <sup>a</sup> ,-6.5 <sup>b</sup> +12.7 <sup>a</sup> ,+6.7 <sup>b</sup> -3.6 <sup>b</sup> +10.5 <sup>b</sup> +5.6 <sup>b</sup> +16.2 <sup>b</sup> ite, <b>b</b> = 5-fold site |











## 16









