Current Trends in High Performance Computing and Challenges for the Future

Jack Dongarra

University of Tennessee

and Oak Ridge National Laboratory

Abstract

In this talk we examine how high performance computing has changed over the last 10-year and look toward the future in terms of trends. These changes have had and will continue to have a major impact on our numerical scientific software. A new generation of software libraries and algorithms are needed for the effective and reliable use of (wide area) dynamic, distributed and parallel environments. Some of the software and algorithm challenges have already been encountered, such as management of communication and memory hierarchies through a combination of compile--time and run--time techniques, but the increased scale of computation, depth of memory hierarchies, range of latencies, and increased run--time environment variability will make these problems much harder. We will focus on the redesign of software to fit multicore architectures.

Profile

• Brief History (School education, Work experience)

Jack Dongarra received a Bachelor of Science in Mathematics from Chicago State University in 1972 and a Master of Science in Computer Science from the Illinois Institute of Technology in 1973. He received his Ph.D. in Applied Mathematics from the University of New Mexico in 1980. He worked at the Argonne National Laboratory until 1989, becoming a senior scientist. He now holds an appointment as University Distinguished Professor of Computer Science in the Computer Science Department at the University of Tennessee and holds the title of Distinguished Research Staff in the Computer Science and Mathematics Division at Oak Ridge National Laboratory (ORNL), Turing Fellow at Manchester University, and an Adjunct Professor in the Computer Science Department at Rice University. He is the director of the Innovative Computing Laboratory at the University of Tennessee. He is also the director of the Center for Information Technology Research at the University of Tennessee which coordinates and facilitates IT research efforts at the University.

• Field of research

He specializes in numerical algorithms in linear algebra, parallel computing, the use of advanced-computer architectures, programming methodology, and tools for parallel computers. His research includes the development, testing and documentation of high quality mathematical software. He has contributed to the design and implementation of the following open source software packages and systems: EISPACK, LINPACK, the BLAS, LAPACK, ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500, ATLAS, and PAPI. He has published approximately 200 articles, papers, reports and technical memoranda and he is coauthor of several books.

• Others (Academic society, Award, Book, etc.)

He was awarded the IEEE Sid Fernbach Award in 2004 for his contributions in the application of high performance computers using innovative approaches and in 2008 he was the recipient of the first IEEE Medal of Excellence in Scalable Computing. He is a Fellow of the AAAS, ACM, IEEE, and SIAM and a member of the National Academy of Engineering.

